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ABSTRACT

A major focus of our program has been to develop a sensitive noninvasive procedure to quantify

early weightlessness-induced changes in cardiovascular function or potential dysfunction, Forty

studies of healthy young volunteers (10 men and 10 women, each studied twice) were conducted to

determine changes in the sympatho-vagal balance of autonomic control of cardiovascular regulation

during graded headward and footward blood volume shifts. Changes in sympatho-vagal balance

were classified by changes in the mean levels and spectral content of cardiovascular variables and

verified by changes in circulating levels of catecholamines and pancreatic polypeptide. Possible shifts

in intra/extravascular fluid were assessed from changes in hematocrit and plasma mass density while

changes in the stimulus to regulate plasma volume were determined from plasma renin activity

(PRA). Autonomic blockade was used to unmask the relative contribution of sympathetic and

parasympathetic efferent influences in response to 10 rain each of 0, 20 and 40 mmHg lower body

negative pressure (LBNP) and 15 and 30 mmHg positive pressure (LBPP). The combination of

muscarinic blockade with graded LBNP and LBPP was used to evoke graded increases and

decreases in sympathetic activity without parasympathetic contributions. The combination of beta

blockade with graded LBN-P and LBPP was used to produce graded increases and decreases in

parasympathetic activity without beta sympathetic contributions. Finally, a combination of both beta
and muscarinic blockades with LBNP and LBPP was used to determine the contribution from other,

primarily alpha adrenergic, sources. Mean values, spectral analyses and time frequency analysis of R-

R interval (I-IR), arterial pressure (AP), peripheral blood flow (RF), stroke volume (SV) and

peripheral resistance (TPR) were performed for all phases of the study. Skin blood flow (SF) was

also measured in other studies and similarly analyzed. Spectra were examined for changes in three

frequency regions [low 0.006 - 0.005 Hz (LF), mid 0.05 - 0.15 Hz (MF), and high 0.15 - 0.45 Hz

(t-IF)]. The primary objective of the study was to indicate which changes in the mean values and/or

spectra of cardiovascular variables consistently correlated with changes in sympatho-vagal balance in

response to headward and footward fluid shifts. A secondary objective was to quantify the vascular

and extravascular fluid shifts evoked by LBNP and LBPP. The principal hypothesis being tested was

that headward fluid shifts would evoke an increase in parasympathetic activity and footward fluid

shifts would evoke an increase in sympathetic activity both of which would be detected by spectral

analysis and verified by circulating hormones.

Hematocrit (HCT), plasma mass density and plasma renin activity increased with muscarinic

blockade and with LBNP, a response indicative of a plasma shift to extravascular spaces. Beta

blockade alone or after muscarinic blockade had no effect on HCT or plasma mass density. With

respect to intravascular fluid volume distribution, LBNP and LBPP produced sufficient upper body

vascular fluid shifts to evoke appropriate autonomic regulatory responses. Catecholamines increased

in response to LBNP and pancreatic polypeptide (PPP) increased in response to LBPP.

In men, at rest and at all levels of LBNP and LBPP, muscarinic blockade resulted in higher mean

values ofHR, AP, TPR and hand vascular resistance with concomitant decreases in SV, RF, CO and

end diastolic volume. The effect of beta blockade was to decrease HR and AP in control and at all

levels of LBNP and LBPP. Either beta or muscarinic blockade given alone, resulted in a decrease in

AP during LBNP that was either small or not present in the unblocked LBNP cases.

In the resting state, HR spectral power in all frequency ranges was only slightly affected by beta

blockade, but was much diminished by muscarinic blockade. The heart rate response to LBNP was



dominatedby parasympatheticwithdrawal in that the ratios of low to high frequencyspectral
powers,LF/HF, andmid to high,MF/HF powerswere increasedby LBNP andwere unaffectedby
betablockade. In the situationsdesignedto evoke unopposedsympatheticand parasympathetic
stimulationandwithdrawal to regulatet-_ we foundthat: 1) sympatheticstimulationresultedin an
increase(with respectto restingcontrol)in the(LF + MF)/HF spectralpowerratio, with no changes
in I-IF power, 2) sympatheticwithdrawalresultedin a decreasein (LF + MF)/HF power ratio anda
slightincreasein t-IF power, 3) parasympatheticwithdrawalresultedin an increase(with respectto
resting control) in the (LF + MF)/HF power ratio and a large decreasein t-IF power, and 4)
parasympatheticstimulationresultedin nochangein (LF + MF)/HF powerratioor I-IFpower.

In women, mean AP increased with either beta or muscarinic blockades. With muscarinic

blockade alone, the increase in AP was due mostly to HR with a slight increase in TPR (SV

decreased). With beta blockade alone, the increase in AP was due solely to TPR (HR decreased, SV

did not change). The addition of beta to muscarinic blockade brought AP back toward control.

Unblocked AP was well controlled during LBNP and LBPP: During LBNP, AP was maintained by

increases in HR and TPR that countered the decreases in SV. After muscarinic blockade, the

decreases in SV and the increase in TPR were slightly greater. After beta blockade the decrease in

SV and increase in TPR were smaller. During LBPP, unblocked AP was maintained by slight

decreases in SV and HR that countered increased TPR. After muscarinic blockade, the increase in

TPR was greater.

When spectral data from women (1994 Progress Report) were compared with those from men

(1993 Progress Report), the following differences were observed:

HORMONAL

. Men had significantly higher (p<.0001) levels of hematocrit than did women indicating lower

relative plasma volume in men. The lower relative plasma volume was not due to a reduced

signal to retain plasma since men had slightly higher levels of PRA than did the women.

2. In the unbiocked state, men had greater levels of PPP than did women. After muscarinic

blockade the PPP level of men dropped to equal that of women.

3. Men had greater levels of epinephrine (p<.01) than did women, and slightly higher levels of

norepinephrine indicating grater sympathetic dominance in men.

MEAN VALUES

. Men had slightly lower unblocked HR (61 bpm) than women (67 bpm). After combined

autonomic blockade HR's were 84 and 85 bpm, respectively, indicating that even though the

intrinsic HR was the same, men had greater parasympathetic input in the unblocked state,

perhaps to counteract the effects of the greater sympathetic activity. The balance of HR was

however tilted toward sympathetic dominance in these men (see above).

. Women had slightly lower (78 mm Hg) unblocked AP than men (83.5 mm Hg). After combined

autonomic blockade, both pressures came to the same value (84 mmHg) via increased TPR in

women (HR and SV changes offset each other).
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SPECTRAL POWER

. Men had significantly greater spectral LF power of SV, CO, TPR, RF and SF than did women

indicating that these variables (but not HR and AP) could be used to provide noninvasive indices

of autonomic balance to detect differences in young men and women.

2. Low, mid and high frequency spectral powers of HR were increased by beta blockade in women.

Beta blockade did not effect HR spectral power in men.

. High frequency spectral power of TPR was increased by muscarinic blockade in men and LF, MF

and HF powers were increased by beta blockade in women indicating that women's TPR was

normally buffered by beta vasodilation.

4. Men's low frequency spectral power of SV was decreased by muscarinic blockade indicating that

muscarinic activity contributed to regulation of SV in men but not women.

In summary our study indicated that the balance of tonic beta adrenergic and muscarinic activity

was different for men and women; women had indicators of increased parasympathetic dominance in

the regulation of heart rate and men had indicators of sympathetic dominance in the regulation of HR

and overall greater sympathetic dominance in the control of CO, SV, TPR, RF and SF.
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1.0 HYPOTHESIS AND OBJECTIVE

A major focus of our overall research program is to develop a sensitive noninvasive

procedure to quantify early weightlessness-induced changes in cardiovascular function or potential

dysfunction. We recognize that loss of orthostatic tolerance results from a plethora of reactions to

the lack of the 1 g gravity vector. In dealing with this problem we have added, to conventional mean

value analysis, spectral analysis techniques that will allow identification of spectral characteristics of

certain cardiovascular parameters that appear to be sensitive indicators of change during simulated

weightlessness. Based on results from previous studies (see BACKGROUND section) we began

experiments to correlate changes in mean values and/or spectral characteristics with changes in the

sympatho-vagal balance of autonomic control of cardiovascular regulation.

Normal human volunteers were noninvasively instrumented to continuously monitor heart

rate, arterial pressure, stroke volume, respiration, peripheral blood flows, and peripheral resistance.

The experimental protocol consisted of graded lower body negative (LBNP) and positive pressures

(LBPP) in combination with beta adrenergic and mucarinic blockades that were used to evoke

responses that were unequivocally sympathetic or parasympathetic in origin. The primary objective

of the proposed study is to validate which changes in mean values and spectra of cardiovascular

variables consistently correlated with changes in sympatho-vagal balance in response to headward

and footward fluid shifts. The principal hypothesis being tested is that, with respect to short-term

responses, headward fluid shifts would evoke an increase in parasympathetic activity and footward

fluid shifts will evoke an increase in sympathetic activity. These changes in autonomic activity will be

detected by spectral analysis and documented by appropriate autonomic blockade and independent

assessment of autonomic activity from plasma levels of pancreatic polypeptide (parasympathetic) and

catecholeamines (sympathetic).

2.0 BACKGROUND

Our research, past and current is designed to aid in the resolution of problems in

cardiovascular regulation induced by weightlessness during spaceflight. Significant physiological

responses to weightlessness include elevated resting heart rate, orthostatic intolerance (possibly

leading to syncope) and higher submaximal oxygen consumption for equivalent workloads: situations

that could compromise astronaut safety during flight or a postlanding emergency (Bungo 1985,

Charles 1986).

2.1 Work by Other Investigators

In the last few years, the frequency content of cardiovascular variables has been added to the

conventional mean value data base to quantitate interactions between sympathetic and

parasympathetic activity in the regulation of cardiovascular function (e.g. Madwed 1991, Rimoldi

1990). These spectral analysis techniques determined that power in cardiovascular variables occurs

in distinct spectral regions and that changes in power in these regions can be diagnostic for a variety

of patho-physiological states. The regions defined by these studies are: 1) the respiration-linked

rhythm of heart rate which is an indicator of vagal control and constitutes the high frequency (I-IF)

component of a given spectral response, usually in the 0.15 to 0.45 Hz range and 2) a frequency

range below 0.1 Hz which, with a sufficiently sensitive analysis technique, can be divided into a mid
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frequency(MF) region (0.05 to 0.1 Hz) and a low frequency(LF) region (< 0.05 Hz). The
predominantevidenceis that the<0.05Hz rangeisbasicallysympathetic(Madwed1991). The 0.05
to 0. 1Hz rangehasbeenassociatedwith sympatheticactivity (Pagan 1991andRimoldi 1990)even
though someinvestigatorsarguedthat this rangemight havea parasympatheticcomponentaswell
(Saul 1990andGrossman1992). The apparentcontradictionin interpretationof oscillationsbelow
the respiratory frequency could be a consequenceof the different techniquesused by these
investigators.

The availabilityof information relatedto thesespectralregionshas openednew areasof
physiologicinquiry. For example:1) An increasein LF anda decreasein I-IFpower (increasingthe
LF/BF ratio by asmuchas20 times,Pagan 1986)hasbeendeterminedfor heartrate in responseto
tilt (Vybiral 1989),standing(Pomerantz1985,Lindqvist 1990),mentalarithmetic(Pagan 1991)and
someforms of exercise(Pagani1988),verifyingnot only anincreasein sympatheticbut a decreasein
parasympatheticefferentactivity in responseto thesestresses.2) A shift in theLF/HF ratio to less
thanonehasbeendeterminedin responseto controlledbreathing(Pagan 1986)indicatingthis stress
enhancesvagalmodulationof heartrate. 3) Shiftsin the relativepowersin thesefrequencyranges
havealsorecentlybecomediagnosticfor avarietyof pathophysiologicstates;hypertension(Guzzetti
1988), ischemicheart disease(Kleiger 1987, Lombardi 1987), heart transplantrejection (Sands
1989),congestiveheartfailure(Saul1988)anddiabeticneuropathy(Lishner1987).

2.2 Previous Work by the Present Investigators

Given the sensitivity of spectral analysis to detect changes in sympatho-vagal balance (based

on the studies cited above and data presented below) we developed a research program to investigate

the potential for using spectral analysis to predict the development of orthostatic intolerance in

response to weightlessness.

The data presented below are results of applying spectral analysis techniques (in addition to

standard measurements of mean changes ) to young men subjects undergoing a short period of

simulated weightlessness. The protocol consisted of: 1) a supine resting period followed by a series

of step and oscillatory (sinusoidal) LBNP inputs, 2) two hours in the launch position, 3) 20 hours of

60 head down bedrest plus Lasix, 4) a return to supine rest, followed by 5) a repetition of the same

step and sinusoidal LBNP inputs. The results from this study are summarized below.

Head down tilt spectra of cardiovascular variables before, during and after the launch

position followed by 60 head down tilt (HDT, our model of weightlessness).

a. In one analysis we investigated the power spectra (autoregression) of cardiovascular variables

of 10 normal men in the supine position before and after simulated weightlessness. The

principal finding was that after 22 hrs of simulated weightlessness there were changes in

cardiovascular power spectra that were statistically significant and supported our original

hypothesis that, after initial adjustments to the headward fluid shift, the long-term response to

fluid volume loss would include increased sympathetic neural activity and decreased

parasympathetic activity.

b. A separate analysis from that above, was conducted to follow changes in mean values in

addition to determining the .spectral content of cardiovascular variables during, as well as

before and after, the simulated weightlessness. An important finding was that the launch



positioncausedmajor changesin arterialpressure(AP) power spectrabut did not affectmean
AP. Statisticalanalysisconfirmsthatthepower in the low frequency(<0.04Hz) rangein these
subjectsincreasedfrom supinecontrol when the subjectswere in the launch position and
remainedelevated(p <0.05)during6° HDT andafterthereturn to supinecontrol. In addition
responsesto thelaunchpositionweresimilarto but morerapidthantheoverallresponsesto 6°
HDT.

Cardiovascular responses (power spectra) of humans to lower body negative pressure

(OLBNP).

This study defined the spectral responses of l0 normal men by examining changes in cardiovascular

spectra induced by OLBNP at various input frequencies. From spectral analysis of the responses, we

determined that most of the power was at the first harmonic of the LBNP input frequency and that

the first harmonic was sufficient to describe the responses of most variables. The net result was that

the first harmonic data could be used to separate active, neurally mediated responses from those that

resulted from passive fluid shifts.

The effect of simulated weightlessness on the cardiovascular of humans to OLBNP.

The results of analysis of differences in the mean values of cardiovascular variables after short-term

weightlessness were explored. The major findings from this study were that peak-to-peak

oscillations in heart rate (HR), central venous pressure (CVP) and calf circumference (CC) decreased

with increasing frequency. Bedrest increased the amplitudes of oscillations of HR while decreasing

the amplitude of CC. The most pronounced difference between sinusoidal LBNP-induced responses

before and after bedrest was an increase in the magnitude of HR oscillations at 0.01 Hz which

emphasized inappropriate timing of peripheral responses to LBNP-induced blood pooling at this

frequency.

Cardiovascular responses (average and power spectra) of humans to step inputs of LBNP

before and after simulated weightlessness.

Spectral analysis (autoregression) of the response to LBNP indicated that spectral power in arterial

pressure and heart rate at -0.05 Hz increased as greater levels of LBNP were applied and that the

power was increased even more in the simulated weightlessness response to LBNP. Spectral power .

in radial flow was dramatically increased by simulated weightlessness in control and at all levels of

LBNP. Changes in spectral power in the breathing frequency indicated that increasing levels of

LBNP decreased the frequency of breathing.

Findings from all of the above studies indicate that:

At rest, there were significant changes in the spectral content of cardiovascular variables

following 22 hrs of simulated weightlessness. These changes indicated a shift of sympatho-

vagal balance toward the sympathetic branch of the autonomic nervous system.



Spectralanalysisof thecardiovascularresponseto OLBNP couldbeusedasa sensitivetool
to assessthe timing of neurally mediated responsesto this type of time-dependent
provocation.

Step incrementsof LBNP increased low frequency spectral power, indicating a shift of

sympatho-vagal balance toward the sympathetic branch of the autonomic nervous system.

3.0 RATIONALE FOR THE PRESENT EXPERIMENTS

The primary goal of the current study was to determine the spectral components of

arterial pressure, heart rate, peripheral flow, stroke volume and peripheral resistance that are

of sympathetic (beta) and parasympathetic (muscarinic) origin. Data were taken from

subjects in supine rest, and during graded LBNP and LBPP and oscillatory LBNP. By

inference the spectral components that remain after combined beta and muscarinic blockades

will be ascribed to alpha adrenergic and/or non neural origins.

Graded LBNP and LBPP were used because of their capacity to evoke hypo and

hypertensive responses respectively. This approach allowed us to dissect the vascular (limb and

whole body peripheral resistance) myocardial (stroke volume) and pacemaker (heart rate) responses

into their relative beta adrenergic, and muscarinic components.

The protocol also offered the potential for examining baroreflex regulation of blood pressure.

Curves measuring the sensitivity of the baroreflex to evoke heart rate and peripheral resistance

changes in response to these graded changes in venous return are being determined for each state of

blockade. Correlation of the information gained from the characteristics of these baroreflex curves

with the spectral content of these variables has the potential to provide new information about the

relative sympathetic and parasympathetic components of the curves.

4.0 METHODS

4.1 Experimental Protocol

DAY 1

Autonomic components of the cardiovascular response to LBNP and LBPP

8:00

9:05

9:15

9:30

9:40

9:50

Subject admitted to UKMC Clinical Research Center.

Subject escorted to experiment room and data recorded:

weight, height, calf circumference, age, etc.

Subject supine, instrumentation placement began: arterial pressure (Finapres),

thoracic impedance (BoMed), ECG (BoMed), calf circumference (Hokansen),

Doppler aortic flow (Exerdop), radial artery flow (Parks) and skin perfusion

(Perimed).

Supine resting control* ",, The order of these

-20 mmHg / LBNP & LBPPReturn to atmosphere applications was



10:00 -40mmHg*
10:10 Returnto atmosphere
10:40 + 15mmHg [

10:50 Return to atmosphere J11:00 +30 mmHg*

11:10 Return to atmosphere

11:40 Lunch

randomized for

each subject.

Subsequent tests on

the subject were admin-
istered in the same

order as during this

unblocked sequence.

NOTE: The order of 13and muscarinic blockades given below was alternated in each subject:

12:00

12:05

12:15

14:25

14:30

14:35

14:40

16:50

Bolus injections ofisoproterenol 1, 5, 10 or 50 ug IV were given until a 20 bpm
increase in heart rate was observed.

Infused the 13antagonist in 0.05 mg/kg increments (IV) to 0.2 mg/kg or until next

dose produced no decrease in heart rate. Isoproterenol injected, same dose as

above. Propranolol increased if heart rate responded to isoproterenol, time

allowed for steady state to be reached.

Rest, LBNP and LBPP protocols repeated, propranolol added as needed to

maintain 13blockade.

13blockade tested to assure full blockade during the preceding test sequence.

The muscarinic antagonist atropine sulfate infused in 0.005 mg/kg increments (IV)

up to 0.04 mg/kg or until subsequent dose produced no further increase in heart

rate.

The 13blockade reinstated with appropriate agonist testing. With an established 13

blockade, a decrease in heart rate was used to indicate the loss of efficacy of

muscarinic - blockade and appropriate dosages of atropine sulfate were

administered. Since the half-life of atropine is 1 hr, atropine sulfate was

administered on an hourly basis throughout the subsequent test protocol.

Rest, LBNP and LBPP protocols repeated, propranolol and/or atropine sulfate

were added as discussed above in order to maintain blockades.

Fluid balance checked, venous catheter removed, subject dismissed.

*Ten ml of venous blood was drawn in the last 2 min of each period and assayed for: HCT,

plasma renin activity, pancreatic polypeptide, norepinephrine, epinephrine and plasma mass

density. These hormonal analyses were performed to independently assess correlates of plasma

volume changes (hematocrit, plasma renin activity and plasma mass density), sympathetic

stimulation (epinephrine and norepinephrine) and parasympathetic stimulation (pancreatic

polypeptide) (Lake 1976, Schwartz 1983, Hoffier 1977, Fortney 1991).

DAY 2 (one week later)

Same as Day 1 except that which ever blocker was

given first on Day 1 was given second on Day 2

4.2 Data Analysis

Data from these experiments are currently being analyzed to examine the effects of

LBNP and LBPP at each level of autonomic blockade.



The analysisof data includes:1) mean level of each variable, 2) slopes of these

variables in response to LBNP and LBPP, 3) baroreflex sensitivity and 4) spectral content of each

variable as determined by both parametric and nonparametric techniques. In the case of spectral

power, the spectra are broken apart into specific frequency ranges and comparisons are being made

within these ranges.

4.2.1 Statistical Analysis

A two-factor, repeated measures analysis of variance (ANOVA) was used to assess

effects of: 1) stress (none, LBNP or LBPP), 2) level of blockade (unblocked, beta, muscarinic and

combined), and 3) interactions between these factors on each cardiovascular variable. Comparisons

between men and women were made by adding a gender factor to the ANOVA.

4.2.2 Spectral Estimation

All signals were digitized on-line at the rate of 200 samples/second. A computer

program was used to detect peaks of the R wave in the ECG, from which R-R intervals were

computed. A new piece-wise constant time series was constructed using these R-R intervals by

holding the value of the R-R interval constant within each cardiac cycle. The resulting piece-wise

constant series was sampled at the rate of 5 samples/second. All other variables were processed

synchronous with cardiac rhythm: the arterial blood pressure signal was integrated with each cardiac

cycle to obtain beat to beat mean blood pressure, the beat-to-beat mean, systolic and diastolic

pressures were used to construct piece-wise constant time series which were sampled at the rate of 5

samples/second. The remaining variables were integrated within each cardiac cycle, and new time
series were calculated from the beat to beat integrated values, similar to R-R interval and blood

pressure time series. From the time series sampled at 5 samples/second, outliers, PVC'S, and

artifacts were removed by using linear interpolation between the data preceding and succeeding these

periods.

Stationa_ Spectral Estimation

During each experimental run (i.e. control, LBNP, LBPP etc.) stationary data segments were

selected by visual inspection, from which spectral estimates were computed using a parametric

(autoregressive, AR) and a non-parametric (averaged periodograms, WELCH) technique.

The AR model coefficients were computed by solving the Yule-Walker equations using the

Levinson Recursion (Kay 1981). Model orders were selected to be the highest of those predicted by

using the Akaike Information Criterion (AIC) (Akaike 1971, Kay 1981), and those predicted by
using a test tiNe series consisting of a sinusoid (0.02 Hz) and Gaussian noise with -10 dB SNR.

Data were sectioned into approximately 100 second long segments. Using the same model order for

all segments, an AR model was fitted for each segment, and the resulting AR coefficients were

averaged to obtain an average AR model for that experimental run. From the complex conjugate

poles of the averaged AR models, spectral component powers and frequencies were computed using

the method of partial fractions (Johnson 1978).

To compute non-parametric spectral estimates, data were sectioned into approximately 100

second long segments with 50% overlap. A Hanning (Bendat 1986) window was used to reduce
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truncationerrors. The Discrete Fourier Transformsof all segmentswere averagedto produce
smoothedspectralestimates.Spectrafrom heartrate,bloodpressure,andto alesserdegreeall other
variables,displayeddistributionof power in threefrequencyregions,centeredat about0.03Hz (Low
Frequency,LF), at about 0.1 Hz (Mid Frequency, MF) and at about 0.25 Hz (High Frequency, HF).

Hence, spectral powers were quantified or binned into these three regions. The LF, MF and HF

bandwidths were selected as 0.006-0.05 Hz (LF), 0.05-0.15 Hz (MF), and 0.15-0.45 Hz (I-IF). The

spectral powers were computed 1) for All Spectra, adding the power of all spectral components that

had their center frequencies within LF, MF or I-IF bandwidths, and 2) for WELCH spectra (Bendat

1986), by integrating the spectrum within the LF, MF and I-IF bandwidths.

Non-Stationary Time-Frequency Spectral Estimation

To track the evolution of the spectra during various physiologic interventions (e.g. during

administration of muscarinic blockers, application of LBNP or LBPP etc.), we obtained the time-

frequency representations by computing the smoothed pseudo Wigner distributions (Hlatwatsch

1992) from the time series sampled at 5 samples/second.

5.0 RESULTS

The information reported below shows results from 40 studies; 20 studies of 10 women (66

+2.Skg, 162 +_ 2 cm and 25 + 1 yr) and 20 studies of 11 men (73.5+ 1.8kg, 175+ 1.4cmand

24.9 _+ .8 yrs). For one subject, the second study could not be performed, therefore, the second

experiment was conducted on an age/physical characteristics-matched subject. Thus the total data

set is reported as a group of 10 men and 10 women, each studied twice. Results of hormonal assays,

mean values and cardiovascular spectra from subjects in each state of autonomic blockade at rest and

during l0 min sessions of lower body negative and positive pressures will be presented. Additional

major results have been, or will be, summarized in manuscripts or presented at meetings (see

Appendix).

5.1 Hormonal Analyses

In order to validate spectral power in certain frequency ranges as reflecting changes in

autonomic activity, several hormonal analyses were performed. The results of assays to indicate

changes in plasma volume (HCT and plasma mass density), plasma volume regulation (plasma renin

activity), parasympathetic activity (pancreatic polypeptide), and sympathetic activity

(catecholamines) are given below.

Plasma volume as indicated by changes in plasma mass density (Hinghofer-Szalkay) were

less consistent than those seen for hematocrit but tended to reflect the same changes. We examined

hematocrit in six cases: unblocked control [pre beta (PB)], beta blocked (B), beta plus muscarinic

blockade (BM), unblocked control [pre-muscarinic (PM)], muscarinic blockade (M) and muscarinic

plus beta blockade (MB). Figure 1 shows hematocrit changes in response to LBNP and LBPP for the

group of subjects before and after beta, muscarinic and combined blockades. The increase in HCT

with LBNP found in this study has previously been reported by Aratow 1993, Hinghofer-Szalkay

1992 and Fortney 1991. Beta blockade had n__oeffect on HCT. The small increases in HCT with

LBPP and muscarinic blockade have not been reported previously and will be a subject of further

study. The fairly rapid (10 min) hemoconcentration that occurred in response to lower body negative
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andpositivepressuresmayreflect the summationof filtration/absorptionand/ormixingof macroand
micro circulations,secondaryto changesin vascularresistanceasreportedbelow. The increasein
HCT that occurredwith muscarinicblockademayimply a tonic activity by muscarinicreceptorsto
regulateplasmavolumeor aneffectthat wassecondaryto theothercardiovasculareffectsof atropine
(i.e. increasedheartrateand/orvascularresistance).

Sympathetic activity as indicated by plasma norepinephrine (NE), is illustrated in Figure 2a.

In both groups, irrespective of beta and muscarinic blockade, LBNP increased norepinephrine, but the

increase in men was greater than that in women p<.01. Beta and muscarinic blockades both increased

the NE response to LBNP in men. The higher values of NE seen in unblocked women compared to

unblocked men appears to have been an artifact of sample storage, since data from another 10 men

taken subsequently revealed significantly greater epinephrine and slightly greater NE in men compared

to women.

Parasympathetic activity as indicated by the response of pancreatic polypeptide (PPP) to

LBPP before and after beta, muscarinic and combined blockades is illustrated in Figure 2b. As with

hematocrit, beta blockade had no significant effect on PPP, but muscarinic blockade decreased PPP

in men. We had hypothesized the increase in PPP during LBPP (used to evoke an increase in vagal

activity), but the gender difference and the decrease in response to atropine are new findings of the

present study.

5.2 Mean Values

5.2.1 1 Mean Values, Resting Controls, Men: Group (N= t0) averaged values + SEM of

cardiovascular variables are given for 10 min of supine rest in Figure 3a-i for unblocked, beta

blocked, muscarinically blocked and combined blockade states. In Figure 3a, the effect of atropine

was to significantly elevate AP when given in the unblocked state, with no effect when given after

beta blockade. In both unblocked and beta blocked states, atropine induced an increase in HR (3b)

and concomitant decreases in EDV (3c), SV (3d) and RF (3e) with no net effect on CO (3f). The

AP response to atropine in the unbtocked case (column 4 to column 5) however was greater than in

the beta blocked case (column 2 to column 3). This difference lay in the magnitude of the decreases

in CO and increases in total vascular resistance (3g) and radial artery resistance (reflecting skin and

skeletal muscle changes) (3h) that were greater in the unblocked than in the beta blocked state. The

increase in mean TFI (inversely related to thoracic fluid), Figure 3i, indicated that atropine given to

unblocked subjects increased thoracic impedance significantly, while the atropine-invoked increase in

TFI after beta blockade was much smaller and not statistically significant. The principal responses to

beta blockade were significant decreases in HR and AP both before and after muscarinic blockade

with no significant changes in any other variables. Differences between (muscarinic + beta) and (beta

+ muscarinic) blockade states were significant only in HR. Since beta blockade followed muscarinic

by -1 hour, we attribute the higher HR in the beta + muscarinic state (column 3 vs column 6) to non

muscarinic non adrenergic vagal excess tachycardia (Donald 1967) which had most likely been

expended by the time beta blockade was added to muscarinic blockade.

The major conclusions drawn from changes in mean values from resting men in response to
beta and/or muscarinic blockades are that the effects of acute beta blockade were small and were

confined to decreases in heart rate and heart rate's affect on arterial pressure, In contrast, responses

to acute muscarinic blockade were large and appeared to decrease vascular volume, SV, RF and

EDV, as well as having excitatory effects on I-_ RR and TPR.
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5.2.1.2 Mean Values During LBNP and LBPP, Men: Mean _(2. SEM) values of

cardiovascular variables at each stage of autonomic blockade and each level of LBNP and LBPP are

given in Figure 4; the control values are the same as in Figure 3. The panels on the left are for the

sequence in which muscarinic blockade was followed by beta blockade and panels on the right are for

the sequence in which beta blockade was followed by muscarinic blockade. Like resting control, the

major effect in each variable was from muscarinic blockade (zX,@). The atropine-induced increases in

AP, I-_ and TPR and decreases in indices of vascular volume (SV and EDV) were maintained

during both lower body negative and positive pressure. Beta blockade, (V,E) did however lower

heart rate (with respect to its preceding state) at all lower body pressure levels.

Lower body negative pressure caused a decrease in stroke volume (Figure 4a) that was

counteracted by increases in heart rate (Figured 4a) and peripheral resistance (Figure 4b), resulting in

minimal changes in arterial pressure. Either muscarinic or beta blockade when given alone resulted

in an LBNP-induced decrease in AP, but combined blockade resulted in a response that was more

like the unblocked response.

Mean calf circumference, an index of peripheral fluid shifts, indicated that LBNP increased

calf circumference by up to 3%, but there was no change from control during LBPP. In the

unblocked state, TFI (Figure 4b) tended to decrease during LBPP, indicating a shift of fluid to the

thoracic region. The effect of this fluid shift on cardiovascular regulation is shown by the decrease in

HR accompanying this increase in thoracic volume. For all variables other than TFI and HR, the

response to LBPP was very similar to LBNP (cardiac output and stroke volume were below control

levels and total peripheral resistance was above its control level).

5.2.2.1 Mean Values, Resting Controls, Women: Mean (+ SEM) values of cardiovascular
variables for the 10 women at each state of autonomic blockade at rest and at each level of LBNP

and LBPP are given in Figures 5a and 5b. The panels on the left are for the sequence in which

muscarinic blockade was followed by beta blockade and panels on the right are for the sequence in

which beta blockade was followed by muscarinic blockade. The center points of each line in Figure

5a and 5b indicate the group (N=10) averaged values + SEM of a cardiovascular variable for 10 min

of supine rest. In Figure 5, top row, the effect of atropine was to significantly elevate AP when

given in the unblocked state, and to reduce AP toward control levels when added to beta blockade.

Similarly, beta blockade increased AP when given alone and returned AP to control when added to

mucarinic blockade. In both unblocked and beta blocked states, atropine induced an increase in HR,

a slight increase in TPR and decreases in stroke volume and skin flow. The principal responses to

beta blockade were decreases in FIR, both before and after muscarinic blockade, and decreases in SV

and CO in the unblocked state. The increase in AP mentioned above was due to the increase in TPR

in response to beta blockade. There were no significant changes in any other variables. Differences

between muscarinic + beta, and beta + muscarinic blockade states were significant for AP, HR and

SV. As with the men's data, we attribute the higher HR in the beta + muscarinic state to non

muscarinic non adrenergic vagal excess tachycardia (Donald 1967) which had most likely been

expended by the time beta blockade was added to muscarinic blockade.

The major conclusions drawn from changes in mean values of resting women in response to

beta and/or muscarinic blockades are that acute beta blockade increased TPR and AP and slightly

decreased HR and CO. Responses to acute muscarinic blockade were large and consisted of

decreases in vascular volume, SV, SF and end diastolic volume (EDV, not shown), and increases in

HR and AP.
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5.2.2.2Mean Values During LBNP and LBPP, Women: The atropine-induced increases in

mean values of AP, _ and TPR and decreases in indices of vascular volume (SV and EDV) seen at

rest were maintained during both lower body negative and positive pressure (Figures 5a and 5b). In

addition beta blockade increased TPR and SF and lowered HR at all lower body pressure levels.

Lower body negative pressure caused decreases in SV and CO that were counteracted by

increases in HR and TPR, resulting in minimal changes in AP. Either muscarinic or beta blockade

when given alone resulted in a response which was similar to the unblocked response.

For all variables other than HR, the response to LBPP was similar to LBNP (CO and SV

were below control levels and TPR was above its control level).

Differences in men and women were that 1) men did not change TPR and AP in response to

beta blockade 2) the men's HR and TPR increased more with atropine 3) the men's HR decreased

less with beta blockade.

5.3 Spectral Power

5.3.1.1 Spectral Power, Resting Controls, Men: The spectral results from the present

study were divided into three regions: low (0.006 to 0.05 Hz), mid (0.05 to 0.15 Hz) and high (0.15

to 0.45 Hz) frequencies. Oscillations in these frequency regions have been classified by others

(Aksetrod et al) as representative of thermoregulatory, baroreflex, and, respiratory inputs in the

regulation of heart rate. Autonomic contributions to both HR and other variable oscillations is the

subject of the present study

Unblocked resting HR spectra as a function of time for one subject in control and in

response to atropine and propranolol are given in Figure 6a and 6b respectively. The loss of power

in response to increasing atropine (0.005 mg/kg dose at arrows) was maintained in all frequency

regions throughout the muscarinically blocked study that followed, see Figure 9 below. Spectral

changes in HR in response to beta blockade (0.05 mg/kg dose at arrows) are given in Figure 6b. In

contrast to the loss of spectral power in all frequency regions that occurred with muscarinic

blockade, spectral responses to beta blockade were less obvious. Figure 7a shows heart rate spectra

averaged over 9 subjects before (u) muscarinic blockade, after muscarinic blockade (M) and after

combined muscarinic and beta blockades (M+B). Arterial pressure, stroke volume and vascular

resistance spectra for these same subjects in the same states are given in Figure 7b, 7c and 7d. From

these figures, it is clear that muscarinic blockade had dramatic effects; it increased spectral power in

AP and TPR and decreased power in HR and SV. However when all subjects were included and the

data were normalized to eliminate dominance of the responses by any one subject, some effects seen

in Figure 7 were statistically significant and others were not. Spectral power for each subject was

normalized by the power in the bin (frequency region) that had the highest value [low, mid or high

frequency region for unblocked (pre beta), unblocked (pre muscarinic), beta, muscarinic, beta +

muscarinic or muscarinic + beta blocked states, (18 in all)]. This normalization scheme preserved

changes in total power that occurred as a function of experimental intervention while giving each

subject an equal input into group results.

In order to illustrate significant differences and the effects of beta as well as muscarinic

blockades, we will present histogram averages of spectral power. In the results below we are
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assumingthat changesboth in the magnitudesandmagnituderatios of spectralpower of variables
contributeto the observedresponsesin the samemannerthat the meanvaluesof SV and HR
contributeto themeanvalueof CO andmeanvaluesof CO andTPR contributeto the meanvalueof
AP. (Whenthe analysisof the phaserelationshipsbetweenvariableshasbeencompleted,we will be
ableto quantifythe relative contributionsof phaseand magnitudein a given response.)Figure 8
showsthemeanpowerin eachfrequencyregionfor all 10subjectsunblocked,afterseparatebetaand
muscarinicblockadesandafter combinedblockadestates.All spectralpowerswereplotted ona0 to
1 scalein order to show overall power distributionin the three frequencyregions. Statistically
significant changesin responseto muscarinicblockade, beta blockade and muscarinicbeta
interactionsareindicatedby m,B andmxB in eachpanel. For the group, muscarinicblockadehad
no significanteffectson AP (Figure 8a) or TFI (Figure 8b) power in any frequency region. For HR

(Figure 8a), muscarinic blockade significantly lowered power in all frequency regions and for SV

(Figure 8a), power in both the low and mid frequency regions were lower. Beta blockade decreased

power in AP (Figure 8a) in the high frequency region due either to non significant decreases in the

magnitude or changes in the phase relationship (still to be determined) between TPR (Figure 8a) and

CO (Figure 8b). For radial flow (Figure 8b) there was a marginally significant interaction: beta

blockade decreased high frequency power in the unblocked state and increased it in the

muscarinically blocked state. Beta blockade significantly decreased power in TFI (Figure 8b) in all

frequency regions both before and after muscarinic blockade, perhaps reflecting sympathetically

mediated modulation of respiratory activity.

5.3.1.2 Spectral Power Responses to LBNP and LBPP, Men: Mean Values + SEM of

spectral responses to 10 min at 2 levels each of lower body negative (LBNP) and positive (LBPP)

pressures are shown in Figure 9a-g. Again, spectral powers of each subject were normalized by the

power in the bin that contained the most power, however there were now 90 bins for each subject (6

states of blockade x 3 bins x 5 pressure levels). Several results are worth noting:

Muscarinic blockade decreased spectral power in control and during LBNP and LBPP for

heart rate (all frequency ranges Figure 9b), stroke volume (low and mid ranges Figure 9c) and

cardiac output (mid frequency range Figure 9f) with no consistent effect on AP (Figure 9a), RF

(Figure 9g) or TPR (Figure 9d).

Beta blockade decreased spectral power during LBNP and LBPP in cardiac output in the

mid frequency range by small decreases in SV, TPR and HR powers.

Lower body negative pressure increased AP spectral power in the mid frequency range and

this increase was changed only slightly by beta and muscarinic blockades. The increased AP power

in this region occurred in spite of decreased SV and CO power and correlated with increased TPR

power; but again, the phaserelationships between these variables have not yet been determined. In

addition, muscarinic blockade, given alone, increased AP spectral power at -40 mmHg in both low

and mid frequency regions. Beta blockade given alone or following muscarinic blockade, reduced

(with respect to the preceding state) AP spectral power at -40 mmHg in both low and mid frequency

regions. A decrease in HR power in response to LBNP was most obvious in the high frequency

region in the unblocked state and was erased by muscarinic blockade.

In addition to the normalized spectral powers presented above, we also looked at the ratios

of low/high, mid/high and (low + mid)/high normalized frequency power for each variable. In most

cases, no new information was added by this procedure, however in a few cases additional
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information about changesin variablepower appears;these results are given in Figure 10 for
unblocked,muscarinicandbetablockedcases.

Whereasmid frequencyspectralpower in AP (Figure9a)had beenincreasedby muscarinic

blockade during LBN-P, the ratio of mid to high frequency powers (MF/I-IF) was slightly decreased in

control and during LBN-P and LBPP (Figure 10a). Decreases in IV[F/I-IF in both TPR (10b) and CO

(10c) were observed, and the decrease in CO appeared to be due to the decrease in SV MF/I-_ (10d)

which had a more dominant effect on CO than did the increase in HR MF/I-IF (Figure 10e).

Beta blockade had little effect on MF/HF of all variables. There was a tendency for MF/HF

of AP and HR to increase less during -40 mmHg LBNP after beta blockade than in the unblocked

state, but this tendency may not be statistically significant.

In the unblocked state, LBNP increased AP MF/I-_ (10a) and HR MF/HF (10e) while SV

MF/HF (Figure 10d) was decreased and TPR MF/HF was unchanged. After muscarinic blockade the

increase in AP MF/HF was blunted apparently due to the blunted decrease in SV MF/HF which had a

more dominant effect on CO than did the enhanced increase in HR MF/ttF.

In the unblocked state, LBPP slightly decreased AP MF/HF (Figure 10a) due to slight

decreases in MF/H_ of CO (both HR and SV) and TPR. After muscarinic blockade, these LBPP-

induced decreases in MF/HF values of SV, CO and TPR were reversed.

In the muscarinically blocked case, the ratio of subrespiratory [(LF + MF)/HF] powers of HR

(Figure 1Of) increased above control during LBNP and decreased below control during LBPP. This

ratio is probably the best means of assessing the level of sympathetic input to the control of heart rate

in response to intravascular fluid shifts.

5.3.2.1 Spectral Power, Resting Controls, Women: The spectral results from these studies

are divided into the same three frequency regions as the men's spectral results: low (LF, 0.006 to

0.05 Hz), mid (MF, 0.05 to 0.15 Hz) and high (t-IF, 0.15 to 0.45 Hz),, however they are illustrated

differently.

Figure 11 shows heart rate spectra averaged over 10 women in control, at + 15 and + 30

mmHg LBPP and -20 and -40 mmHg LBNP; TOP: before muscarinic blockade (PM), after

muscarinic blockade (M) and after combined muscarinic and beta blockade (MB); BOTTOM: before

beta blockade (PB), after beta blockade (B) and after combined beta and muscarinic blockades

(BM). Arterial pressure, SV and TPR spectra for these same subjects in the same states are given in

Figures 12, t3, 14. From these figures, it is clear that, in women, both beta and muscarinic

blockades had dramatic effects; muscarinic blockade decreased spectral power in HR and SV, beta

blockade also decreased power in SV and increased power in TPR and I-tR.

When these data were normalized to eliminate dominance of the responses by any one

subject, some effects seen in Figures 11-14 were statistically significant and others were not. In

Figures 15-18, spectral power for each subject was normalized by the power in the bin (frequency

region) that had the highest values [low, mid or high frequency region for unblocked (pre beta),

unblocked. (pre muscarinic), beta, muscarinic, beta + muscarinic or muscarinic + beta blocked states,

18 bins in all]. This normalization scheme preserved changes in total power that occurred as a

function of experimental intervention while giving each subject an equal input into group results.

16



As with the men's results,we are assumingthat changesboth in the magnitudesand
magnituderatiosof spectralpower of variablescontributedto the observedresponsesin a similar
mannerasthemeanvaluesof SV andHR contributedto the meanvalueof CO and asmeanvalues
of CO and TPRcontributedto the meanvalueOf AP. Therefore,whenthe analysisof the phase
relationshipsbetweenvariableshas been completed,we will be able to quantify the relative
contributionsof phaseandmagnitudein agivenresponse.

5.3.2.2Spectral Power Responses to LBNP and LBPP, Women: Group averaged

spectral power responses (+ SEM) to 10 min at 2 levels each of LBNP and LBPP are also shown in

Figures 15-18. Again, spectral powers of each subject were normalized by the power in the bin that

contained the most power, there were 90 bins for each subject [6 states &blockade x 3 frequencies x

5 pressure levels].

Muscarinic blockade decreased spectral power in control and during LBNP and LBPP

for HR (all frequency ranges, Figure 15) and SV (LF and MF, Figure 16). Muscarinic blockade

increased spectral power in TPR (LF and t-IF, Figure 17) during LBNP and LBPP with no consistent

effect on AP (Figure 18).

Beta blockade decreased spectral power during LBNP and LBPP for CO in the mid

frequency range due to decreased SV power. Beta blockade increased HR power in all frequency

ranges in control and during LBNP and LBPP and increased TPR power in all ranges during control

and LBPP.

Lower body negative pressure increased AP spectral power in the MF range and this

increase was changed only slightly by beta and muscarinic blockades. The increased AP power in

this region occurred in spite of decreased SV and CO power and correlated with increased TPR

power; but again, the phase relationships between these variables have not yet been determined. In

the t-IF region, HR power in response to LBNP was most obviously decreased in the unblocked

state, was slightly enhanced by beta blockade and was erased by muscarinic blockade.

5.3.3 Comparison of Spectral Data Between Women and Men: The results of the 3

factor ANOVA for HR, SV, AP and TPR are given below. The 3 factor ANOVA consisted of one

between (gender) and two within (blockades, lower body pressures) factors with repeated measures

on both within factors]. Due to the quantity of data, only those factors that were statistically

significant are discussed. There were no 3 factor interactions. Results for both spectral power and

spectral power normalized by maximum bin power (relative power distribution) were tested and are

discussed. In maximum bin normalization, each subject's data is scaled to the bin in which that

subject had maximum power, therefore all data are <__1 (this represents the relative shifting of power

between LF, MF and I-IF bins).

Gender: When power at all pressure levels and autonomic blockades were combined,

men had greater overall power for all variables (Figure 19); this was true for all frequency bins.

However, the relative amounts of power of H_ SV and TPR in MF and I-IF bins were greater for

women than for men. When resting values alone were considered, the gender differences in AP and

HR were not significant, but men had significantly greater power of TPR, SV, RF and skin flow than

women. These gender differences are discussed in detail in a manuscript submitted to the American

Journal of Physiology, Heart and Circulation, February 1997.
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Autonomic Blockades (Data Not Shown): Independent of gender and pressure

levels, muscarinic blockade decreased total power and the distribution of power in LF and I-IF bins

for HR and in total, LF and MF bins for SV. Muscarinic blockade increased the HF power of SV

and total power of AP. In addition muscarinic blockade changed the distribution of power in TPR by

shifting power from the MF to LF and I-IF bins. Beta blockade increased the total, LF and HF power

of HR and increased the distribution of HR power in LF and I-IF bins.

Lower Body Negative and Positive Pressures: When power for both genders and all

states of blockade were combined, LBNP decreased power (total, LF, MF and I-IF) of tlR and SV

and increased the total, MF and HF powers of TPR and AP (Figure 20). Lower body positive

pressure increased total power and the distribution of HR power in MF and I-IF bins.

Gender by Blockade Interactions (Data Not Shown): Independent of pressure levels,

muscarinic blockade decreased SV total and low frequency power more in men than women. In

addition, muscarinic blockade increased total and LF power of TPR and AP more in men than

women. Beta blockade increased I-IF HR power (both normalized and compared to MF and LF) in

women but not in men. Finally beta blockade decreased t-IF power of TPR in men and increased it in

women. The major difference between men's and women's AP spectral response to autonomic

blockade appears to be due to TPR and to some extent HR; in the unblocked (premuscarinic) case,

men increased TPR power in response to muscarinic blockade and decreased TPR power in response

to beta blockade. Women did the reverse.

Blockade by Lower Body Pressure Interactions: Independent of gender, beta

blockade increased, and muscarinic blockade decreased HR I-IF power in control and at all levels of

LBNP and LBPP. In addition beta blockade increased the proportion of HR power and decreased

the proportion of TPR power in the I-IF bin during LBNP.

Gender By Lower Body Pressure Interaction: Independent of blockade level, women

had a greater proportion of power in the HR HF bin during LBPP than did men.

6.0 SUMMARY

The present study had as its principal goal the validation of the use of spectral analysis of

cardiovascular signals to indicate changes in autonomic inputs to blood pressure regulation. The

study was designed to induce fluid shifts into and away from the upper body by applying lower body

negative and positive pressures at various stages of autonomic blockade. The combination of these

fluid shifts with blockades was done to evoke states of increased vagal and sympathetic stimulation

in order to identify regions of the spectra associated with specific autonomic activity. Measurements

were made to determine 1) volume shifts into and out of the vasculature (hematocrit and plasma

mass density) as well as 2) an index of the relative amounts of volume shifted within vascular

compartments (calf circumference, thoracic impedance and end diastolic and stroke volumes). The

responses to these intravascular fluid shifts were determined from: a) changes in vasoactive

hormones (plasma levels of pancreatic polypeptide, an index of vagal activity, catecholamines an

index of sympathetic activity and plasma renin activity, an index of the drive to retain plasma), b)

changes in the mean values of reflexly driven responses (heart rate, total peripheral and hand

resistances) and c) changes in spectral power of the cardiovascular parameters.
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Due to the extensivelayeringof the factors in this study(2 genders,6 blockadestates,5
lower body pressurestatesand,for spectra,3 frequencybins)we will summarizethemajor findings
in the following categories(unlessotherwisestated,findingsarefor bothmenandwomen):

1. Extravascular/vascularfluid volumeshifts

a. Hematocfit, plasma mass density and plasma renin activity increased with LBN-P in men

and women and, in men, with LBPP, a response indicative of a plasma shift to

extravascular spaces and an increase in the drive to retain plasma.

b. Beta blockade alone or after muscafinic blockade had no effect on HCT or plasma mass

density and therefore no apparent effect on extravascular fluid shifts.

c. Muscarinic blockade alone or after beta blockade increased HCT indicating a shift of fluid

to extravascular spaces. LBNP further increased HCT after muscarinic blockade.

2. Intravascular fluid volume shifts

a. Lower body negative pressure increased calf circumference and thoracic impedance and

decreased stroke volume and cardiac output, all indicators of a translocation of fluid from

the chest to the periphery during LBNP.

b, Lower body positive pressure had no effect on calf circumference and its effects on other

variables were similar to, but smaller than, the effects of LBNP. The decreases in these

other parameters with no change in calf circumference, indicated that LBPP produced a

shift of fluid out of the thoracic vasculature, perhaps to upper body extravascular spaces,
as listed in la above.

C. Muscarinic blockade (given alone) increased thoracic impedance, indicating a

translocation of fluid away from the chest. This could be the effect of the extravascular
fluid shift listed in la above but since:

d. Beta blockade administered before muscarinic blockade modified the increase in mean

TFI seen with muscarinic blockade alone, it could be that beta activity had attenuated the

effect of muscafinic blockade to produce either an extravascular or a peripheral fluid
shift.

. Responsiveness to fluid volume shifts

a. Mean values

1) Resting controls

a) The effect ofmuscarinic blockade was to increase mean heart rate by-30 bpm

with concomitant decreases in SV and EDV whether given before or after

beta blockade. In addition arterial pressure increased when atropine was

given in the unblocked case, due to an increase in total peripheral resistance,

but did not increase when atropine was given after beta blockade.

b) In men, the effect of beta blockade was to decrease both AP and HR in the

unblocked (4 mmHg and 5 bpm respectively) and muscarinically blocked (12
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c)

mmHg and 17 bpm) states. In women, beta blockade increased TPR and AP
and decreased HR and SV.

The HR difference between the two states of combined blockade could account

for the differences in pressure and flow and was itself most likely due to vagal

excess tachycardia (evoked by the initial dose of atropine) that had had about 3

hrs to decay in the muscarinic + beta case and only a few minutes in the beta +

muscarinic case.

2) During LBN'P and LBPP

a) Like resting control, the principal effect was from muscarinic blockade which

resulted in higher mean values of HR, AP, TPR and hand resistance and

concomitant decreases in EDV, SV, RF and CO at all levels of LBNP and

LBPP.

b) Also, like control, the effect of beta blockade was to decrease HR and AP at
all levels of LBNP and LBPP.

c) For most variables, after beta blockade was added to muscarinic blockade, the

responses to LBNP and LBPP were more similar to the unblocked responses

than they were after muscarinic blockade alone.

d) Either beta or muscarinic blockade given alone, resulted in a decrease in AP

during LBNP that was either small or not present in the unblocked LBNP

cases.

e) Lower body positive pressure decreased TFI and t-_ indicating that the
increase in thoracic fluid was sufficient to invoke a reflex decrease H]t.. The

decrease was enhanced after muscarinic blockade.

b. Spectral changes

1) Resting controls

The major effects of autonomic blockade on spectral power in supine resting control

consisted of the following:

a) Muscarinic blockade

i) reduced the low frequency spectral power ofHR, SV, CO, RE and TFI
in men and HR and SV in women.

ii) reduced mid frequency power ofHR, SV and CO in men, and HR, SV

and CO in women.

iii) reduced high frequency power of HR and CO in both sexes.

b) Beta blockade

i) reduced low frequency spectral power of TFI in men and increased LF

power of HR and TPR in women.

ii) reduced mid frequency power of TFI and CO in men and AP and CO

in women, increased women's MF power of HR and TPR.

iii) reduced high frequency power of CO of both men and women,

increased t-IF power of HR and TPR in women.

c) Combined muscarinic and beta blockades further reduced mid and low

frequency power of CO in men, resulting in a reduction of low frequency power

of AP and TPR in both sexes.

d) Spectral changes in HR during combined beta and muscarinic blockades were
not different from muscarinic blockade alone in both sexes.
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2) During LBNP

a) Unblocked LBNP spectral power responses indicated:

i) an increase in AP MF power that was associated with increased TPR

and TFI MF powers.

ii) a decrease in AP LF power that was associated with decreased CO power.

The decrease in CO power occurred in all bins and was associated with

decreased HR and SV, LF, MF and HF powers.

b) Muscarinically blocked LBNP spectral power responses indicated that:

i) increases in AP MF and I-W power were enhanced (with respect to the

unblocked response) and, in men only, were associated with increased

TPR power.

ii) increased TPR LF power was enough to reverse the LBNP-induced

decrease in AP LF power seen in the unblocked state in men and the

decreased HR/HF power in women.

iii) the LBNP induced decreases in HR and SV were blunted or eliminated.

3) During LBPP

a) Unblocked LBPP spectral power responses indicated:

i) a decrease in SV and CO LF and MF power in men and slight increases in MF

and HF power of HR in women.

ii) slight increases in TPR LF and MF power and a decrease in I-IF power in men,

with slight increase in TPR LG, MF and t-IF in women.

iii) a slight decrease in AP power (LF, MF and HF), both sexes.

b) Muscarinically blocked LBPP spectral power responses indicated that follo_

blockade, the decreases in SV liad CO LF and MF power were enhanced in men,

and the increase in TPR in women was also slightly enhanced.

4) Interpretation of spectral changes in men:

The summary of spectral responses presented below wilt be focused on HR due to:

specificity of the blockades to HR control, 2) availability of data in the literature for future

comparison and 3) lack of a complete analysis of other variables.

1)

The important spectral features for interpreting changes in HR spectra are illustrated in

Figure 21 which is provided to supplement data from Figures 4, 9b and 10. For HR, we found the

ratio of (LF + MF)/H2 _ powers, (Figure 21 tom _and t-IF power (Figure 21 bottom) to be the most

sensitive spectral indicators of sympathetic/parasympathetic balance in response to intravascular fluid
shifts.

Figure 21 has been designed to answer the following four questions: How do HR spectral

features change in response to: 1) an increase in sympathetic activity? 2) a decrease in sympathetic

activity? 3) an increase in parasympathetic activity?, and 4) a decrease in parasympathetic activity?

The experimental condition which best evoked an unopposed increase in sympathetic

regulation of heart rate was -40 mmHg after muscarinic blockade. In this case mean HR increased

from muscarinically blocked resting control by 18 b/m. Increased sympathetic activity correlated with
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anincrease,from control, in theHR (MF + LF)/HF ratio (column1) asaresultof a slightincreasein
LF power. Theexperimentalconditionwhichbestproducedan unopposeddecreasein sympathetic
activitywas+30mmHgLBPP aftermuscarinicblockade(column3). In this casemeanHR decreased
-7 bpm. The decreasein sympatheticactivitycorrelatedwith adecreasefrom control, in theHR (LF
+ MF)/H_Fratioasaresult of asmallincreaseinHF power.

The experimentalconditionwhichbestillustratesanunopposeddecreasein parasympathetic
regulationwas-40mmHg after betablockade.In this casemeanHR increasedby -5 bpm. Like the

case for an increase in sympathetic activity, decreased parasympathetic activity correlated with an

increase, from control, in the HR (MF + LF)/I-IF ratio (column 1), but in this case it was the result

of a pronounced decrease in HF power. The experimental condition which best illustrated an

unopposed increase in parasympathetic regulation was +30 mmHg after beta blockade. In this case

there was no change from control in either mean HR or the HR (LF + MF)/I-IF ratio.

7.0 CONCLUSIONS

One of the major findings from this study was the difference in the balance of tonic beta

adrenergic and muscarinic activity between men and women; men had indicators of increased

sympathetic dominance in SV, TPR, RF and SF and women had indicators of parasympathetic

dominance in the regulation of HR.

7.1 At Rest

HORMONAL

1. In the unblocked state, men had greater levels of PPP than did women. After

muscarinic blockade, the PPP level of men dropped to equal that of women.

2. Men had significantly greater epinephrine and slightly greater norepinephrine than

women.

3. Men had greater HCT than women indicating less relative plasma volume in men.

4. Men had slightly greater PRA than women, indicating an equivalent or greater

stimulus to retain plasma volume.

MEAN VALUES

1. Men had slightly lower unblocked HR (61 bpm) than women (67 bpm). After

combined autonomic blockade, mean HR was 84 and 85 bpm, respectively,

indicating that even though the intrinsic HR was the same, men had greater

absolute parasympathetic input in the unblocked state even though their

autonomic balance was shifted toward sympathetic dominance.

2. Women had slightly lower (78 mmHg) unbtocked AP than men (83.5 mmHg).

After combined autonomic blockade, both pressures came to the same value (84

mmHg) via increased TPR in women (t-IR and SV changes offset each other).

SPECTRAL POWER

1. Low, mid and high frequency spectral power of I-_ and TPR were increased by

beta blockade in women. Beta blockade did not affect HR spectral power in men
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.

indicating that women, but not men had tonic beta adrenergic buffering of these
variables.

High frequency spectral power in TPR was increased by muscarinic blockade in

men, but not in women. Muscarinic blockade dramatically decreased SV spectral

powers in men, but not in women.

7.2 During LBNP and LBPP

With respect to intravascular fluid volume distribution, as expected, our results indicated

that LBNP and LBPP produced sufficient upper body vascular fluid shifts to evoke appropriate

autonomic regulatory responses. During resting control and all levels of LBNP and LBPP, the

principal effect was from muscarinic blockade which resulted in higher mean values of _ AP, RR

and TPR and concomitant decreases in EDV, SV, RF and CO. Also, like control, the effect of beta

blockade was to decrease HR and AP at all levels of LBNP and LBPP. Either beta or muscarinic

blockade given alone, resulted in a decrease in AP during LBNP that was either small or not present

in the unblocked LBNP cases. The response to LBPP included increases in pancreatic polypeptide
and thoracic fluid volume and decreases in mean heart rate.

The heart rate response to LBNP was dominated by parasympathetic withdrawal in that the

ratios of LF/I-IF and MF/HF powers were increased by LBNP and were unaffected by beta blockade.

In the situations where we could evoke unopposed sympathetic and parasympathetic stimulation and

withdrawal to regulate HR, we found that: 1) sympathetic stimulation resulted in an increase (with

respect to resting control) in the (LF + MF)/HF spectral power ratio, with no changes in HF power,

2) sympathetic withdrawal resulted in a decrease in (LF + MF)/HF power ratio and a slight increase

in HF power, 3) parasympathetic withdrawal resulted in an increase (with respect to resting control)

in the (LF + MF)/HF power ratio and a large decrease in H_ power, and 4) parasympathetic

stimulation resulted in no change in (LF + MF)/HF power ratio or HF power. Preliminary

examination of other variables leads us to conclude that, like _ the responsiveness of these men

and women to LBNP, LBPP and autonomic blockade was dominated by changes in parasympathetic

regulation.
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FREQUENCY RESPONSE CHARACTERISTICS OF
CARDIOVASCULAR CONTROL BEFORE AND AFTER SIMULATED

WEIGHTLESSNESS. GRIFFIN, A.K., J.M. Evans, M. Wang, C. Kim,
C.F.Knapp. Center for Biomedical Engineering, University of Kentucky,

Lexington, KY 40506-0070. We have previously determined the frequency
response characteristics of cardiovascular (CV) control for normal males;
however, potential changes associated with true and simulated

weightlessness (SW) have not been reported. SW-induced changes in the
CV frequency response of males were determined following periods of
normal activity and after exposure to the following SW protocol: Two hours

in launch position, 20 hours 6o head down bed rest, and Furosemide (40rag
PO). Following periods of normal activity and SW, ten male volunteers

were exposed to oscillatory lower body negative pressure (OLBNP) at seven
frequencies (0.004 - 0.1 Hz). Fourier spectra were calculated for arterial

pressure (AP), calf circumference (CC), central venous pressure (CVP),
heart rate (HR), stroke volume (SV), and total peripheral resistance (TPR).
Mean values, first harmonic amplitude, phase angles, cross spectra, and
coherence between appropriate variables were determined. Two factor
repeated measures analysis of variance was utilized to determine the

significant effects of SW and/or OLBNP. Statistically significant differences

between means as obtained by Neuman-Keuls Criteria were accepted for
p<0.05. Cardiovascular frequency response characteristics (first harmonic
amplitude vs. OLBNP frequency) showed similar trends after normal activity
and after SW. The amplitudes of fluid volume shifted by OLBNP decreased
after SW, as evidenced by a decrease in the amplitudes of oscillations of both
CC and CVP. However, the amplitude of AP and HR oscillations increased

following SW. When the half amplitude of AP was normalized by the half
amplitude of CC or CVP, the magnitude of the oscillations more than

doubled after SW indicating a change in the regulatory system due to SW.
The magnitude of TPR and HR responses, normalized by AP amplitude,
were similar after normal activity and following SW suggesting that arterial
baroreflex regulation of these responses was less effective. The magnitude
and timing of hydraulic and reflex responses in regulation of blood pressure
will be the focus of discussion. Supported by NASA NAG9-298 and
GCRC M01-RR-2602.
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HORMONAL RESPONSES OF SYNcOPAL _'NONSYNcoPAL MEN

AND WOMEN TO +30 AND -40 mmHg LOWER BODY PRESSURE. L_M__
Evans, B Ott, S Vallur_palli, C $Kim, F M Leonelli, A K Griffin and C t"

Biomedical Engineering and Cardiology, UK, Lexington, KY 40506.

Forty studies were conducted on 20 subjects, 10 men (175_+t cm,
74+_.2 kg, 25_+1 yr) and 10 women (162-+2 cm, 66+_2.5 kg, 25+1 yr). Blood

pressure, heart rate, and stroke volume were monitored continuously and
blood samples were drawn at the end of 20 min. of supine rest and 10 min.
each of lower body positive (LBPP) and negative (LBNP) pressure. Clear

pres.yncopal episodes were detected in 11 LBNP trials (6 men and 5 women),
no s:gns of presyncope were observed in 22 trials with the remaining trials
unclear. A three factor ANOVA (syncopal vs. nonsyncopal, men vs. women,
and control vs. LBPP or LBNP) was used to test for statistical significance.
Significant results included 1) Hematocrit (%), an index of plasma volume:

Syncopal subjects had higher resting control values than did nonsyncopal
subjects (41.9-2_.6 to 39.7+.4, p<.007). 2) Norepinephrine (NE, pg/ml), an
index of sympathetic activity: All groups increased NE in response to -40
mmHg (147.9+8.4 to 215.5_+13.7, p<.0004) with no response to +30
mmHg. Syncopal men had higher (232_+25, p<.04) overall NE values
compared to nonsyncopal men (173-+9), syncopal women (186_+19), and
nonsyncopal women (173:_9). 3) Pancreatic Polypeptide (Ppp, pg/ml), an
index of parasympathetic activity: Overall, men had significantly higher
values than women (57+4 to 43+4, p<.03). Responses to +30 mmHg were • -:
marginally significant (p<.l): syncopal subjects increased PPP (48-+5 to
55+_5), while nonsyncopal subjects decreased (55+7 to 43-+7). These results
indicate that in addition to plasma volume, the autonomic response to fluid
shifts is different for subjects who are syncopal than for those who are not.
Supported by NASA NAGW-3786 and N1}I GCRC NO1 RR 2602.

Blue lines are printer's cut lines; do not type on or outside of these dines.

MAILING ADDRESS OF FIRST AUTHOR

(Please print in black ink or type. Provide full

name rather than initials.)

Joyce M. Evans

Center for Biomedical

Engineering

Wenner-Gren Research Lab

University of Kentucky

Lexington, KY 40506-0070

Phone: 606-?57-2685

Fax: 606-257-[856

STUDENT AWARDS

Check below if abstract is submitted for student
award.

APS Student Award

APS Scholander Award

AIN/Procter _ Gamble

Grad. Student Res. Award

__ ASIP Experimental Pathologist-in-

Training Award

ASIP Student Travel Award

AAA Student Travel Award

AAA Dissertation Award

AAA Langman Award

APS ASPET ASIP AIN AAA

PRESENTATION PREFERENCE
(Check one)

Oral _ Poster _ Indifferent

SELECT CATEGORY NUMBERS & TITLES

(See Topic Category Lists)

I.125_____-ICV Neural Control of C:

2._ILO_I Control&Stab. of Cir

3. 1015-i Phys. Syst. Anal.

AAI

See the Instructions on pages 13-14 for

selecting Mode of Presentation, 8lock, and
Dimension Choices.

A B C

O o {a ._o"_

_,= : .= =og
oE o--og

o_ r_

MEM8ER'S AFFILIATION (Check one only):

__APS __ASSM8 __ASPET __ASIP __AAA

__AtN __AAI __ASC8 __81OPHYS

X__SMES __SEBM __1S8 __NAS8 __NAVSO

__ISNI __ISNIM __ISIR __AMLI __[SDCI

__ASHI __SMI

Other Guest Society

Submission of signed form indicates acceptance

and compliance with "Rules for Submission of
= Abstracts."

C. F. Knapp

Member's Name (Print or Type)

Member's Signature

- 6N6-2_7-2894..
Member's Telephone

606-257-1856
FAX

Signing member, are you willing to chair a

session? YES, category ,_._D E F G

I.... I I I
- Author Conflict of Interest

--_ --_ _ _ [ [] Check if there is a possible conflict of interest in I }
_ _ _> [ presenting this information on the part of the

o. o I. author(s) or presenter, so that it may be noted in: :_ £. oo
.... : " I": :: the: Program. See over, regarding possible conflict

: _ .o{t interest. _ . :. .'3 .

Final decision regarding presentation format is at the discretion of the programming Society.. :



EXPERIMENTAL

BIOLOGY 95

ABSTRACT

FORM

ABSTRACT M UST

BE RECEIVED

IN SOCIETY

OFFICE BY

TH U R S DAY,

DECEMBER 1, 1994

DO NOT FOLD

THIS FORM

SEE OVER FOR

COMPLETE INSTRUCTIONS

ABSTRACT PROCESSING

FEE $30

(See reverse for

payment instructions)

COARSE GRAINED SPECTRAL ANALYSIS (CGSA) OF HEART
RATE IN DETERMINING POTENTIAL FOR SYNCOPE DURING
LBNP. K R King, J M Evans. A R Patwardhan. B Ott. S VatluruDalli,
C S Kim. F M Loonelli, A K Griffin, and C F Knapp. Biomedical
Engineering and Cardiology, U of Ky, Lexington, KY 40506.
Ten male subjects were studied in resting control and during
levels of lower body positive (LBPP) and negative (LBNP)
pressure (15,30,-20,-40 mmHg or-20,-40,15,30 mmHg, ten
minutes at each pressure level) on 2 different days, one month
apart. In 20 trials, 6 were categorized as syncopal, 11 as non-
syncopal, and 3 as unclear. Syncopal trials were determined by
examination of arterial pressure and heart rate (HR) during-40
mmHg. The following HR spectral indices were determined using
CGSA: 1) Harmonic power, high frequency (0.15-0.5 Hz, PH) and
low frequency (0-0.15 Hz, PL), 2) Fractal power, (PF), 3) Slope
(beta) of log PF vs. log frequency, 4) Total Power, (PT), and 5)
Indices of parasympathetic (PH/PT) and sympathetic (PL/PH)
activity. Results indicated: 1) During LBNP, PF was greater
(p<.04) in syncopal compared to non-syncopal trials. 2)Beta was
greater (p<.06) in syncopal subjects both in control and during
LBNP. These results indicate that CGSA of HR may provide
insight into predicting syncope during orthostatic stress.
Supported by NASA NAGW-3786 and NIH GCRC NO1 RR 2602.
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LBNP-INDUCED CHANGES OF LEFT VENTRICULAR VOLUME

DETERMINED BY ECG-GATED MR/

Griffin, A.K., L. Hilaire, J. Evans, J. Kirsch, K. Wang, F. Leonelli, and

C.F. Knapp. Center for Biomedical Engineering, Magnetic Resonance

Imaging Spectroscopy Center and Division of Cardiology, University of
Kentucky, Lexington, KY 40506-0070.

Hemodynamic changes during two Lower Body Negative Pressure

(LBNP) tests were acquired once using Echo Doppler and once with

ECG-gated Magnetic Resonance Imaging (MRI, spin echo, 2.34 X 1.56 X

6 mm resolution). Five men (25 + 4 yrs, 74 + 3 kg) were exposed to

LBNP at -35 mmHg for 20 minutes. Arterial Pressure (AP), Cardiac

Output (CO), and Stroke Volume (SV) were measured during Echo. MRI

data were analyzed by QuantIm image processing software [Zedec

Technologies, Inc.] to determine contours and areas of myocardial tissue

and the left ventricle. MRI results indicated a 36 + 3% decrease in end

diastolic volume (EDV) during LBNP. Echo results indicated a 30 + 6%

decrease in SV, a value consistent with the MR/ measurement of EDV.

Echo results also indicated a 22% decrease in inferior vena cava (IVC)
diameter and a 20% decrease in CO during LBNP, further indication of

decreased venous return. Agreement between Echo determined SV

changes and MRI determined EDV changes indicates the more complete
data set of ECG-gated MRI images could enhance assessment of heart size
during LBNP-induced fluid volume shifts.

Supported by NASA NAGW-3786 and NIH GCRC NO 1 RR 2602.
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INVASIVE AND NONINVASIVE INDICES OF AUTONOMIC BALANCE
IN MEN AND WOMEN K R King, J M Evans. A R Patwardhan, C SKim, B
O_, F M Leon¢lli, _n(1 CF Knaot_ Biomedical Engineering and Division of
Cardiology, University of Kenth-cky, Lexington, KY 40506.

Ten each normotensive men (175+1 cm, 74+2 kg, 25+1 yr) and women
(162+_2 cm, 66+_2 5 kg, 25+t yr) were studied at supine rest, before and after
acute autonomic "blo6kade (IVpropranolol, .2 mg/kg; atropine, .04 mg/k_.).
Mean values of hormonal indices were measured: norepineplarine _r_t_),
epiaeghrine (E), plasma renin activity (PRA), and pancreatic polypeptide
(Pt'P)] In addition, mean values of hemodynamic indices for heart rate (HR),
arterial pressure (AP), and total peripheral resistance (TPR) were calculated
for 20 minute data records, as were mean values of spectral indices: total
spectral power (TP), HR low (HRLF) and nigh (HRHF) frequency power, and
HR sympathetic nervous system activity index (HRLF/HRHF, SN S index).
HORMONAL INDICES: In the unblocked state, men had significantly nigner
mean PRA (p<.02), E (p<.0001), NE (p<.01), and PPP (p<.001). These data
also suggest increased sympathetic and parasympathetic activity in men
compared to women. HEMODYNAMIC INDICES: In the unblocked state,
men had higher mean AP (p<.06) and TPR (NS), while women naa higner
mean HR (p<.07). After autonomic blockade, men and women had the same
intrinsic HR, indicating that the unblocked HR difference was due to increasea
tonic parasympathetic influence in men. SPECTRAL INDICES: In the
unblocked state, men had significantly higher mean TP. After autonomic
blockade, men and women had similar mean values of TP in all variables.
These data suggest an overall increased level of autonomic activity in men as
compared to women. Men also had significantly higher HRLF (p<.07), and
SNS index (p<.02), specifically suggesting increased sympathetic activity in
men compared to women. The combinatto a of humoral, hemodynamic and
spectral indices indicates an enhanced role for both branches of autonomic
activity in men compared to women. Supported by NASA NAGW-3786 and
NIH GCRC NO1 RR 2602.
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Arterial pressure (AP), heart rate (HR) and stroke volume (SV) were
measured and peripheral resistance (TPR) was calculated for 10 each
normotensive men (175+1 cm, 74+2 kg, 25+1 yr) and women (162+2 cm,
66+2.5 kg, 25+1 yr). Each subject was studied at supine rest, before and after
acute beta blockade (IV propranolol, 0.2 mg/kg). Mean values and spectral
powers (Welch spectra) of each variable were determined from 20 rain data
records.

MEAN VALUES: In men, AP decreased slightly after beta blockade, as a
result of a decrease in HR accompanied by a slight increase in TPR with no
change in SV. In women, AP increased 5% after beta blockade, due to a 26%
increase in TPR accompanied by a 12% decrease in HR and a 6% decrease in
SV. Therefore tonic beta adrenergic activity was an important component in
maintaining CO (via HR and SV) as well as reducing TPR (via vasodilation)
in women but not in men.
SPECTRAL POWER: In the unblocked state, for all variables, men had

greater total spectral power than did women. Beta blockade did not affect
spectral power in men. However in women, low (<.15 Hz) frequency spectral
powers of HR and TPR were increased and SV power was decreased by beta
blockade. Therefore tonic buffering of vasomotion by beta adrenergic
components of regulation appears to be more predominant in the control of
blood pressure in women than in men.
Supported by NASA NAGW-3786 and NIH GCRC NO 1 RR 2602.
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INCREASED RATE OF PLASMA FILTRATION IN SYNCOPAL VS

NONSYNCOPAL SUBJECTS DURING 70 ° TILT. JM Evans, CM

McIntosh, LC Taylor, CS Kim. CF Knapp, FM Leonelli. Biomedical

Engineering and Cardiology, Univ. of Kentucky, Lexington, KY 40506.

Hematocrit (HCT) values for 15 volunteers (vol) and 18 patients (pts)

were determined before and during 30 min of 70 ° head up tilt (HUT).

Blood samples were taken from the antecubital vein at the end of 20 min

of supine control and at 8, 18, and 28 rain of
HUT. Nine of the volunteers and 11 of the

patients had syncopal symptoms prior to the

end of the 30 min tilt. In all subjects, HCT rose

sharply during the first 8 min of tilt, continued

to rise as sharply in those subjects who became

syncopal but ptateaued in nonsyncopal subjects.

Slopes of HCT vs time of tilt (HCT/min) were

0.3 T r"l Sync

_ 0"1T
= 0 ..........

Pts Vols

significantly greater

(p<.0002) in syncopal subjects compared to nonsyncopal subjects. We

conclude that the increased rate of plasma filtration in syncopal subjects

may be one factor contributing to syncope in response to head up tilt.

Supported by NASA NAGW 3786 and NIH GCRCM01 RR02602.
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Short-time Fourier transform (STF'£) of RR-interval was used to investigate the

autonomic responses of 20 subjects (10 each men and women) to supine control and to
30 minutes of 80° Head-up tik (I-RYe. Subjects were eidaer normal volunteers or

patients who had experienced l_Or episodes of syncope. Subjects were ctassiSed as
either syncopal or uon-syncopal by response to EUT. M:ETHODS. Time series of low
(0-.15 Ez) and high (.15-.5 Hz) frequency power in RR intervat were generated by
performing the STFT with a window lengda of 100 seconds and binning the power in
die high and low frequency ranges at each analysis U.me. RESULTS: TJ.me-frequency
(TF) indices were calculated in supine controt and at 80° HUT. W indices included:
mean (over t.i_e) high (HF) and low (LF) _requency powers, mean (over time)

sympather2c (SNS, LF/LE+HF) and parasympathetic (PNS, EF/LF) indices, and
frequency content of the HF (FUF) and LF (FLF) time series (i.e. the mterm_ttentcy in
the high and low frequency content in rime). RESULTS: PNS .and HF decreased
during u_lt for bodi groups (p<.0001 and p<.003, respectively). SNS increased with u_lt
for all subjects (p<.03). FHF increased with tilt for all subjects (p=.05). FLF was

significantly higher in rton-syncopal subjects during control as compared to syncopal
subjects. (p<.02). These results indicate: 1) Values ofHF, LF, PNS, and SNS failed to
predict any difference in autonomic response to tilt for syrlcopal vs. non-syncopal
subjects. 2) Parasympathetic activity may become more variable during tilt as
evidenced by the increase in FHF. 3) ?redizposition to syncope during HUT may be
predicted during supine control by examining die intemaittentcy (ELF) of low
frequency oscillations in RR interval. Supported by NASA EPSCoR WEU 522611 and
NIH GCRCM01 RR02602.
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EPINEPHRINEJNOREPINEPHRINE BALANCE IN SYNCOPAL

AND NONSYNCOPAL WOMEN'. CF Knapp. CM Mqtntosh.
J'B O_. CS Kim. FM Leonelli. MG Ziegter. JM Evans. Univ of

Kentucky, Lexington, KY 40506 and Univ of CA, San Diego, CA 92103

Data were combined from two studies in which 20 women (165 4- 3 cm,
68 4- 3 kg, 25 4- 1 yr, follicular phase) were exposed to 30 lower body
negative pressure __BNP) sesssions. Ten women were tested twice (-I
month apart) using -40 mmFrg LBNP and another group of ten women
were tested once using 20 min of-35 mml_g I_.BNP. Continuous meas-

urements of arterial pres_tre (AP), heart rate (ItR), stroke volume (SV),
peripheral resistance (TPR) and periodic determinations of hematocrit
(ECT), norepinephrine (N) and epinephrine (E) were made. There were
nine presyncopal episodes (SYNC), no syncopal symptoms (NONSYNC)
occurred in 13 trials, and tile other eight trials were not included due to
incomplete data sets. Prior to syncope, both groups maintained mean AP

at 78 _.+ 3 mm_Eg by TPR increases (36% SYNC, 33% NONSYNC) and
UR increases (34% SYNC, 24% NONSYNC) to buffer SV decreases
(47% SYNC, 44% NONSYNC). Both groups increased NE [162 4- 14 to

208 4- 26 pg/ml (28 %) SYNC vs. 156 __+ 13 to 247 4- 19 pg/ml (58 %)
NONSYNC]. Floweret the syncopal group demonstrated a significantly
greater increase in E [11 4- 1 to 39 4- 12 pg/rnl (255%) SYNC vs 9 4- I

to 18 4- 2 pg/ml (100%) NONSYNC] in response to LBNP. When syncxr-
pat subjects became symptomatic, the decrease in the ratio of NE/E was
accompanied by decreases in TPR and AP (22 4- 3%). These data
suggest that increasing epinephrine preferentially stimulates beta adrener-
gic vasodilation and is therefore a factor leading to syncope in young
women undergoing LBN-P. Supported by NASA NAGW 3786, NASA
EPSCoR WKU 522611 .and NIE .GCRCMOI RR02602 .............................
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While the factors triggering head up tilt (HUT) induced syncope
axe stilt unclear, it is [ikety that the initiating mechanism is an
excessive decrease in venous return to the heart. To investigate some
of the factors contributing to this abnormality, we compared
Epinephrine (E), Norepinephrine (NE) and Hematocrit (Hct) changes
in 6 HUT negative volunteers (V-), 9 HUT positive volunteers (V+)
and 11 HUT positive patients (P) with neurocardiogenic syncope
during 30 rain 80 ° HLrT. Blood samples for E, NE and Hct were
drawn at baseline, every 8 rain during HUT and at the time of
syncope. Each variable's intercept and slope was computed and
group comparisons were made with ANOVA.

RESULTS: There was no difference in the intercepts of these
variables at rest among the three groups. During HUT the slopes of E,
NE and Hct in P and V+ were greater than V- (see Figure). The E/NE
ratio was also higher in P (.42+.09) than V+ (.18+.13) and V-
(. 15_+.04), p<0.02.
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CONCLUSIONS: These results suggest that P and V+ have an
increased peripheral fluid fihration, more marked in P, possibly
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increase in E/NE ratio in P could mediate an inappropriate
vasodilatory response further decreasing peripheral vascular
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Abstract--We investigated the effects of exposure to microgravity on the baseline

autonomic balance in cardiovascular regulation using spectral analysis of cardiovascular

variables measured during supine rest. Heart rate, arterial pressure, radial flow, thoracic

fluid impedance and central venous pressure were recorded from nine volunteers before

and after simulated microgravity, produced by 20 hours of 6 ° head down bedrest plus

furosemide. Spectral powers increased after simulated microgravity in the low frequency

region (centered at about 0.03 Hz) in arterial pressure, heart rate and radial flow, and

decreased in the respiratory frequency region (centered at about 0.25 |lz) in heart rate.

Reduced heart rate power in the respiratory frequency region indicates reduced parasympa-
tlietic influence on the heart. A concurrent increase in the low frequency power in arterial

pressure, heart rate, and radial flow indicates increased sympathetic influence. These re-

sults suggest that the baseline autonomic balance in cardiovascular regulation is shifted

towards increased sympathetic and decreased parasympathetic inlluence after c×posure to
short-term simulated microgravity.

Key Words---sympathetic/parasympathetic balance, heart rate and bh)od pressure spec-
tra, head down bedrest.

ExPOsuRe TO MICROGRAVITY during space flight impairs orlhostatic tolerance upon reh

to the 1 g environment (e.g., Bungo et al., 1985; Charles et al., 1986; Gaffney et al., 19}

Nicogossian et al., 1983). Reduced blood volume (_500 ml) (Blomqvist el al., 19,'

Convertino et al., 1990), baroreflex impairment (Convertino et al., 1990; Eckberg el

1992; Fritsch et al., 1992; Hugbson el al., 1994), and reduced heart rate variabit

(Goldberger et al., 1986) have been reported from real and simulated microgravity sludi,

Both blood volume reduction and baroreflex impairment have been suggested to pin)

role in the development of orlhostalic intolerance. Although an increased sympalhc

response to standing after exposure to simulated microgravity has been reported (T

Harkel et al., 1992), it is unclear whether the baseline autonomic balance, i.e., the sym I

thetic and parasympathetic balance during rest, changes after exposure to simulat

microgravity. Altered baseline autonomic balance would suggest changes in sympalhct,

parasympathetic reserves, which may influence orlhoslatic tolerance. The objective of l

present study was to investigate whether exposure to simulated microgravity prodt,c

changes in the baseline autonomic bahmce in cardiovascular regulation. Spectral indices

cardiovascular variables measured during supine rest were used its indicators of bascli
autonomic balance.

Address correspondence to: Abhijit Patwardhan, Center for Biomedical Eng neering, # 2 Wenner-Grcn Rescm

Laboratory, University of Kentucky. Lexington, KY 40506411)70, phone: (6(16) 257-2728. fax: (61/6) 257-18:

Integrative Physiological and Behavioral Science, July-September, 1995, Vol. 30, No. 3, 201-214
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We measured electrocardiogram (ECG), arterial blood pressure (BP), thoracic fluid

index (TFI), central venous pressure (CVP), and radial artery blood flow in supine volun-

teers for 15 minutes before and after 20 hours of simulated microgravity. The microgravity

simulation consisted of 20 hours of 6° head down bedrest plus furosemide. To accelerate

fluid loss, we used furosemide to pharmacologically induce diuresis. After exposure to

simulated microgravity, heart rate (HR) power decreased in the respiratory frequency

region; conversely, there was an increase in the low frequency power in BP, HR, and radial

flow. These results suggest that after 20 hours of short-term simulated microgravity, there

is a shift in baseline autonomic balance towards increased sympathetic and decreased
parasympathetic influence on cardiovascular control.

Methods

Nine healthy male volunteers participated in this study. The mean (_.+ standard error)

age, height, and weight were 25.8 + 1.4 years, 179.6 ___1.4 cm, and 76.5 _ 2 Kg. Each

volunteer was screened prior to the study to verify that no apparent medical problems

existed. Volunteers were familiarized with the experimental protocol and signed a consent

form approved by the Institutional Review Board at the University of Kentucky.

A catheter (Argyle 14 FR, 70 cm long) was inserted under fluoroscopic guidance, via
the median cubital vein into the superior vena cava. This catheter was used to measure

CVP (Cobe). Four pairs of impedance leads were placed bilaterally, two on the base of the

neck and two midline on the thorax (at the level of the xiphoid), to measure ECG and TFI

(BoMed). A photo-plethysmographic cuff (Finapres) was placed on the middle finger of

the right hand to measure BP continuously. DeBoer et al (1987) have shown that arterial

pressure spectra computed from pressure measurements made with the Finapres and from

pressure measurements made with an intra-arterial catheter are practically identical. Mea-

surements of radial flow were made at the left wrist, using an ultrasonic doppler flow

meter (Hokanson). All signals were recorded on strip chart [Astro-Med MT8800R], as well
as on analog tape [TEAC XR-510] recorders.

Data were collected during a 20-minute supine presimulated microgravity period. After

the presimulated microgravity period, volunteers were exposed to a series of provocative

tests consisting of step and oscillatory lower body negative pressure (LBNP). The LBNP

tests lasted for about 90 minutes. At the end of LBNP, a short break for lunch was allowed.

After lunch, volunteers resumed the supine position for 30 minutes, followed by 2 hours in

the launch position. The launch position was followed by 20 hours of head down bedrest,

during which furosemide (LASIX, 40 mg) was administered by mouth after 2 hours of

bedrest. At the end of 20 hours of bedrest, volunteers were returned to the supine position

and analog data were collected for a 20-minute postsimulated microgravity period. This

postsimulated microgravity period was followed by the LBNP procedure previously de-
scribed. Fluid intake by the subjects was ad libitum, however, the amount of fluids con-

sumed and urine output were monitored throughout the experiment. Results from the

LBNP tests are reported elsewhere (Levenhagen, 1994). In the present study, results from

the 20-minute presimulated mtcrogravity period (prior to LBNP, launch position, and

bedre_t) and from the 20-minute postsimulated microgravity period immediately after 20

hours of bedrest are reported. Volunteers were in the supine position during both pre- and
postsimulated microgravity measurements.
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Analysis

All signals were digitized using a DATAQ (CODAS) system, at the rate of 500

samples/second. To reduce transient effects, data from the first 5 minutes of the 20 minute

epochs were discarded. Therefore, all subsequent analyses were performed on 15-minute
data segments.

The digitized ECG was processed using a R wave peak detection algorithm from which

a beat-to-beat heart rate time series was constructed (DeBoer et al., 1984), with each

element of the series being the reciprocal of successive R-R intervals. All other variables

(BP, TFI, CVP and radial flow) were averaged on a beat-to-beat basis to obtain a mean

value for each cardiac cycle, and a time series was constructed using these mean values.

Data were sectioned into six 2.5 minute segments and any linear trends were removed.

For each of the six preprocessed data segments an Auto Regressive (AR) model was fitted

using the Levinson-Durbin recursion algorithm (Kay and Marple, 1981). An average
model estimate was obtained from these six estimates. Estimates of model order were

obtained as follows: All data were first processed using the Akaike Information Criterion

(A/C). Because AIC can underestimate model orders for short data records (Kay and
Marple, 1981), a test time series was constructed by adding Gaussian white noise to a

sinusoid with frequency of 0.02 Hz (i.e., the lowest frequency of interest for this study, see

Results). The signal to noise ratio was set at -10 dB, and the variance of the test series was

linearly scaled to match actual HR data. The test time series was processed with increasing
model orders until the peak at 0.02 Hz was resolved. The largest model order from tho_e

predicted by the AIC (from all data segments) and from the test time series was then used

to process all data. The number of data points in any segment were at least 3 to 4 times the

model order used, ensuring satisfactory performance of the AR model estimation (Kay and

Marple, 1981). The adequacy of the model order was confirmed by testing the residual
series for whiteness (Jenkins and Watts, 1968).

Different model orders (as predicted by criteria such as AIC, or final prediction error)

for different data segments have been used by other investigators (Baselli et al., 1987;

Pagani et al., 1986; Rimoldi et al., 1990). However, in the present study, because AR
models from six segments were averaged, it was essential that the same model order be

used in estimating the AR coefficients for each of the six individual data segments. The

rationale behind sectioning the data into six segments and using an averaged AR model

estimate, instead of obtaining an AR model estimate from one continuous data record, was

to increase statistical stability of the model estimate and to reduce the effects of l/f type
nonstationary noise. Heart rate spectra exhibit l/f type spectral characteristics when com-

puted from long data records (Saul et al., 1988). Because cardiovascular variables a're

coupled via various control loops, it was presumed that other variables might have l/f type

nonstationarities as well. The effects of l/f type noise are more pronounced on spectra

computed from longer data segments than on those computed from shorter data segments,

(Yamamoto and Hughson, 1991), hence, averaging spectra from shorter segments better

retains the stationary information while reducing the effects of l/f type noise [Yamamoto
and Hughson, 1991, their table 1].

From the averaged model estimates during each state (pre- and postsimulated

microgravity), spectral components (power and frequency) were computed using the resi-

dues associated with each pair of complex conjugate poles of the averaged model (Johnson

and Anderson, 1978). The residues were computed using the method of partial fractions

(Kay and Marple, 1981). Because the time series were constructed on a beat-to-beat basis,
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the unit of spectral frequency was cycles/beat. Spectral frequencies were converted from

cycles/beat to cycles/second (Hz) by multiplying the frequencies by mean heart rate in
beats/second (Pagani et al., 1986).

Spectra obtained in the present study showed concentration of power in three frequency

regions (figures 1 and 2). The three frequency regions were, low frequency (LF, centered

0.03 Hz), mid frequency (MF, = 0.1 Hz), and high frequency (HF, = 0.25 Hz). Hence,

spectral components were binned into three different frequency regions, i.e., the powers

associated with all the spectral components within each of the three frequency regions

were summed (figure 1). As suggested by Pagani et al. (1986), only those spectral compo-

nents that had power greater than 5% of the total power were used for analysis. The center

frequencies of the bins were selected based on the spectral densities obtained in this study
(see Results), and were consistent with those reported in the literature (e.g., Akselrod et al.,
1985; Madwed et al., 1991; Parati et at., 1990).

To minimize the effects of intersubject variability in total spectral powers, power in
each bin, within each subject was normalized (scaled) by the power in that bin which had

the maximum value. That is, for each subject, the powers in each of the six bins (pre- and

postsimulated microgravity LF, MF, and HF) were divided by the largest power of these
six bins. We refer to this normalization method as maxtmum bin normalization. The

maximum bin normalization method was selected because it scales all spectral powers to

be between 0 and 1, and at the same time preserves any changes in total power. If the data

are normalized by total power, i.e., divided by total power, as su_,.e_ted by Pagani et al

(1986), and Rimoldi et al. (1990), then informa<(ion :a_bout any chah_ges in total power are

not retained in normalized powers. Because all of the six powers within each subjecl (LF,

MF, and HF in pre- and postsimulated mtcrogravity) were divided by the same number

(i.e., by the maximum of the six), data were not shifted or biased towards any particular

state (i.e., pre- or postsimulated microgravtty) by the normalization method. To investigate

the effects of normalization method on spectral data, comparisons between pre- and

postsimulated microgravity spectra were also conducted after normalization by total
power.

Statistics

Analysis of variance (ANOVA) followed by a Newman-Keuls test was used to indicate

significant effects of exposure to simulated microgravity. Significance was accepted at p <
0.05.

Results

Fhud Balance. Assessment of fluid balance, estimated as the difference between fluid

intake and output, indicates a possible change in blood volume, either depletion or redistri-

bution. Average fluid intake and urine output from nine subjects was 2907-,-380 and

3400___273 ml respectively, with a net fluid loss of 493-,-181 ml after the simulated
microgravity exposure.

Heart Rate. Averaged spectral estimates of HR from 9 subjects during pre- and
postsimulated microgravity (dashed and solid lines) are shown in figure 2. Figure 2 shows

that HR power was concentrated in three frequency regions, centered at _ 0.03 (LF), = 0.1

(MF), and _ 0.25 Hz (HF). After inspecting spectral plots from individual subjects and the

averaged spectra, cutoff frequencies for binning were selected as 0.006 - 0.075 Hz for LF,

O

1.80

1.40

tLF
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MF

Heart rate spectrum

Spectral components

f= 0.02 Hz, p = 45 %

f= 9.10 Hz, p = 9%

f=O.12 Hz, p= 9%

f=O.29Hz, p=17%

f= 0.34 Hz. p = 20 %

• 6OO

.200
' "..""_

°°.

I .i

H_

• . ..

Freq. (Hz)

FIG. 1. Illustration of the binning procedure. Heart rate spectrum (solid line) from one subject computed

from presimulated microgravity exposure. Distribution of power in three frequency regions (delineated by
vertical lines) was observed for spectra from all subjects. Powers of all the spectral components that had center

frequencies within each region were added to quantify LF, MF and HF powers. For simplicity, only the largest
5 spectral components (dotted lines) are shown above, in this case, the LF, MF and HF powers would be 45,
18, and 37% of the total power.

0.075 - 0.18 Hz for MF, and 0.18 - 0.5 Hz for HF powers (figure 1). The lower limit tbr

the LF region (0.006 Hz) was selected because each data segment was 150 seconds long.
Frequency cutoffs at 0.075, 0.18 and 0.5 Hz were selected to include powers in the
appropriate region (i.e., low, mid and high) for all subjects.

Heart rate power in the HF region was reduced (p < 0.004) after simulated microgravity

in each of the nine subjects (figure 3, top panel). Heart rate power in the HF region, when

normalized by total power, also decreased after simulated microgravity (p < 0.0033, figure

3, bottom panel). Figure 4 shows that averaged (N=9) HR power in the LF region in-



206 PATWARDHANET AL.

5.00 ........... Pre simulated weightlessness

4.50

4.00

3.50

0 3.00

0

2. OO

Post simulated weightlessness

1.50

I ,OO

• 500

.060 . :t80 .300 .420 .540

Freq (t-Iz)

Fro. 2. Averaged HR spectra from nine subjects, before (dashed lines) and after (solid lines) simulated

microgravity. These spectra show the power distribution in the low-, mid- and high-frequency regions.

creased after simulated microgravity (p < 0.05), while there was no significant change in

the MF region.

The LF powers increased and HF powers decreased, hence, LF/HF ratios increased after

exposure to microgravity. The LF/HF power ratios are not reported because the ratios

carried no additional information than that presented by LF and HF powers. Mean heart

rates increased (p < 0.05) from 65 to 68 beats/min after simulated microgravity.

Arterial Blood Pressure. Spectral power in BP was predominantly distributed in two

frequency regions = 0.03 Hz and at _ 0.1 Hz, while the power in the high frequency region

was small (figure 5). The differences in spectral powers between pre- and postsimulated

microgravity were not significant in either HF, MF or LF regions. However, in the LF

region, power was greater after simulated microgravity with p = 0.065 (figure 4).

Radial Flow. Spectral characteristics of radial flow were similar to those of BP, i.e.,

power was mostly concentrated in two frequency regions, at = 0.03 and _ 0.1 Hz. Changes

in averaged power in the LF, MF and HF regions are shown in Figure 4. After simulated

microgravity, power in the LF region of radial flow increased (p < 0.05), while there were

no statistically significant changes in MF and HF regions.
Thoracic Fluid Index. TFI, a measurement of thoracic impedance, is a function of fluid

volume changes in the chest, and thereby reflects respiratory activity. As expected, most of
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microgravity exposure. Power in HF region decreased in each subject after exposure to microgravity. Similar

decrease in each subject's HF power was observed when the spectra were normalized by maximum bin (top

panel) or the total power (bottom panel).

the power in TFI spectra was concentrated in the respiratory frequency region (- 0.25 Hz).
No change in the respiratory frequency bandwidth was observed after simulated

microgravity, but power in the HF and the MF regions increased significantly (p < 0.05,
figure 4).

Central Venous Pressure. CVP spectra were rather diffuse, with more power in the HF

region relative to LF and MF. There were no statistically significant changes between

before and after simulated microgravity, though power in the HF (respiratory frequency)

region tended to increase (figure 4). Mean CVP decreased (p > 0.05) from 2.9 _.+0.9 mm

Hg to 2.0 _+0.7 mm Hg after simulated microgravity.
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microgravity. High-frequency power decreased in HR and increased in TFI. The low-frequency power in-

creased in HR, radial flow, and BP. * indicates p < .05, @ indicates p = .065.

Discussion

The objective of this study was to investigate the effects of simulated microgravity on
baseline autonomic balance in cardiovascular regulation as indicated by changes in the

spectral content of cardiovascular variables measured during supine rest. Nine volunteers

were placed in a microgravity simulation that consisted of 20 hours of 6 ° head down

bedrest plus pharmacologically induced diuresis (furosemide). We computed the spectral
content of HR, BP, TF1, CVP and radial flow before and after simulated microgravity.

Low frequency power in HR, BP, and radial flow increased, and high frequency power in
HR decreased after simulated microgravity. As discussed below, the decrease in high

frequency power in HR indicates reduced parasympathetic influence, and the increase in
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FiG. 5. Averaged BP spectra from nine subjects, pre- and postsimulated microgravity (dashed and solid

lines). Most of the power in BP was localized in the low- and mid-frequency regions.

low frequency power in HR, BP, and radial flow indicates increased sympathetic influence

on cardiovascular regulation during the resting state. We speculate that the altered auto-

nomic balance was probably a consequence of the blood volume reduction and redistribu-

tion that occurs during exposure to simulated microgravity.

We selected 6 ° head down bedrest because it is a widely used analogue of microgravity

(e.g., Baisch et al., 1992; Convertino et al., 1990; Eckberg et al., 1992; Fritsch et al., 1992;

Goldberger et al., 1986). We added diuresis to our bedrest protocol to accelerate the fluid

loss to about 500 ml, which is usually observed after 2 to 3 days of head down bedrest.

Although we did not measure plasma volume, the difference between fluid intake and

output (= 493 ml) was similar to the reduction in plasma volume (by = 439 ml) reported by

Convertino et al. (1990) after 3 days of head down bedrest. In the present study, mean

heart rate was slightly (3 beats/min) higher after simulated microgravity, the increase in

HR was also similar to that reported by Convertino et al. (= 3 beats/rain) after 3 days of

head down bedrest. Hence, in terms of blood volume reduction and increase in heart rate,

our results were similar to those observed after 3 days of head'down bedrest.

Spectra for HR, BP and radial flow showed concentration of power in three frequency

regions in all subjects during pre- and postsimulated microgravity, although high fre-

quency powers in BP and radial flow were relatively small. The observed concentration of

power in three frequency regions in HR spectra is consistent with the results of Parati et al.

(1990), and was the rationale behind investigating spectral changes in three frequency

regions (LF, MF and HF) rather than just two regions (MF, and HF) as suggested by
Malliani et al. (1991).
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Spectral changes in respiratory frequency region

Changes in respiratory or HF power in HR reflect changes in efferent parasympathetic

activity, as shown in humans with the use of atropine (e.g., Goldberger et al., 1986;

Hayano et al., 1991; Pomeranz et al., 1985; Tappet al., 1990), and in dogs with selective

SA nodal surgical denervation (Randall et al., 1991) and direct neural recordings (Katona

et al., 1975). Ithas been suggested in humans that, for small changes in efferent parasym-
pathetic activity (small relative to total or almost total blockade as in the case of denerva-

tion or atropine), absolute values of HR variability might be better indicators of vagal

activity than normalized (by total power) values (Inoue et al., 1990). Moreover, Hayano et

al. (1991), using atropine for complete vagal blockade in humans, found a strong correla-
tion between nonnormalized HR high frequency power and vagal tone but no correlation

between normalized (by total power) HF power and vagal tone. The normalization method

used in the present study (maximum bin normalization) preserves changes in total power
and hence changes in normalized powers are similar (but scaled) to nonnormalized powers.

The reduction in high frequency power in HR observed in the present study, however, was

significant even when the data were normalized by total power. Thus, the reduced power in

the HF region of HR observed in the present study indicates reduced parasympathetic
influence after simulated microgravity.

Thoracic fluid impedance is a measurement of the electrical impedance of the thorax,

and thus predominantly reflects fluid shifts due to respiration. Because respiration affects

heart rate variability in the HF region (Hirsch and Bishop, 1981), we computed TFI spectra

to determine changes in respiratory pattern after simulated microgravity. The respiratory

bandwidth (as determined from the width of the TFI spectral peak in the HF region) did

not change after Simulated microgravity. Measurements made in our laboratory during

another study (unpublished data) show that, in the supine position, tidal volumes computed

by digitally integrating airflow measured using a pneumotachograph (Hans Rudolph) cor-

related with TFI (r= 0.74, p < .05). Therefore, the increase in HF power in TFI after

simulated microgravity suggests an increase in tidal volume. Because HF power in HR

increases with increased tidal volumes (Hirsch and Bishop, 1981), the decrease in HF

power that we observed (figures 3 and 4) was probably not a consequence of changes in
tidal volumes. It is interesting to note that Pagani et al. (1986) also observed an increase in

tidal volumes during sympatho-excitation (i.e., during orthostatic stress). The mechanisms

responsible for this increase in tidal volume are unclear. The increase in HF power in CVP
(although not statistically significant) was similar to that of TFI, probably also a conse-
quence of changes in tidal volume.

Spectral changes in low- and mid-frequency regions

Saul et al. (1990) observed a significant correlation between muscle sympathetic nerve

activity and low frequency power in HR during increasing sympathetic activity but not

during baseline or decreasing sympathetic activity. Hence they suggested that low fre-

quency power in HR is indicative of both sympathetic and parasympathetic activity. How-

ever, as discussed below, we consider that collective interpretation of results from other

studies suggests that in HR spectra, an increase in low frequency power, if concurrent with

reduced high frequency power, indicates increased sympathetic activity.

Total spectral power in HR (or R-R interval., HR and R-R intervals both yield similar

spectra) decreases and the power in the high frequency region is almost completely abol-
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ished after atropine in humans and dogs (Rimoldi et al., 1990; Tappet al., 1990) and on tilt

in humans (Pagani et al., 1986). As a consequence, when normalized powers (by total
power) are considered, after muscarinic blockade, the low frequency component becomes

larger relative to the high frequency component. In contrast, Pagani et al. (1986) observed

an increase in both total and HF power in R-R interval spectra after chronic beta adrener-

gic blockade. Hence, after normalization, the HF component became larger relative to the

low frequency component. Based on these results, Pagani et al. (1986) and Malliani et al.

(1991) suggested that the low frequency power is an indicator of changes in sympathetic
activity. Inoue et al. (1990) observed an almost complete lack of HR power in the = 0.1 Hz

region in neurologically complete quadriplegic patients, while the HF power (non normal-

ized) was similar to that of normal subjects. This also suggests a link between low fre-

quency power and sympathetic activity. Inoue et al. (1990) computed AR spectra using the
same technique used by Pagani et al. (1986), which probably explains the location of their

low frequency power at = 0.1 Hz rather than at lower frequencies observed in the present
study.

Increased low frequency power has also been reported in humans during orthostatic

stress, during hypertension, and during daytime relative to nighttime, all suggesting in-

creased sympathetic excitement (Malliani et al., 1991). Madwed et al. (1991) observed, in

dogs, increased power in HR spectra at ,=0.05 Hz after hemorrhage, which they considered

to indicate increased sympathetic activity. Hence, the predominant evidence suggests that

increases in low frequency power are indicators of increased sympathetic activity.

Taken collectively, reduced parasympathetic activity tends to reduce nonnormalized

power in both LF as well as HF regions (Pagani et al., 1986; Tapp et al., 1990), while

increases in sympathetic activity increase low frequency power (Saul et al., 1990). In the
present study, HF power in HR decreased after simulated microgravity, which indicated

reduced parasympathetic activity. Reduced parasympathetic activity would tend to reduce

the total power, and thus reduce the power in the LF region as well. However, we observed
an increase in LF power while HF power decreased, and, because maximum bin normal-

ization method preserves (scales) changes in total power, our results indicate increased

sympathetic influence after simulated microgravity. The increase in mean heart rate after

simulated microgravity observed in the present study, also suggests a shift in the sympa-
thetic/ parasympathetic balance towards the sympathetic branch.

The mechanisms responsible for generation of low- and mid-frequency oscillations in

BP are not clear. It has been suggested that the low-frequency oscillations in BP are caused

by a resonance-type phenomenon due to delays in the sympathetic loop of the baroreflex

(DeBoer et al., 1987). In dogs, Madwed et al. (1991) suggest that low-frequency oscilla-

tions in BP may be predicted by the slow temporal response of peripheral (vascular)

sympathetic effector mechanisms. In either case, increases in LF power in BP probably

also indicate increased sympathetic activity (Malliani et al., 1991). Ten Harkel et al. (1992)
compared BP spectra during orthostatic stress before and after 10 days of head down

bedrest. They observed that the orthostatic response was enhanced after bedrest, i.e., the

increase in power in the 0.1 Hz region on standing was larger after exposure to bedrest,

which they considered to be indicative of enhanced sympathetic response to standing after
bedrest. Furthermore, Madwed et al. (1991) observed, in dogs, an increase in the low-

frequency oscillations in BP at = 0.05 Hz after hemorrhage, reflecting increased sympa-
thetic excitation. Hence, the increased low-frequency power in BP that we observed after

simulated microgravity indicates increased sympathetic influence, probably via increased
peripheral sympathetic excitation.
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If low-frequency oscillations in BP are modulated by changes in peripheral sympathetic

excitation, then changes in peripheral resistance should be evident in radial flow in the

low-frequency region as well. The radial flow measurement was made at the distal end of

the radial artery, thereby reflecting flow to a peripheral vascular bed. The increased low-

frequency power in radial flow (figure 4), therefore, was probably also a consequence of
increased vasomotion.

It appears that spectral power in HR and BP for frequencies below the respiratory

frequency are indicative of sympathetic excitation. However, the exact frequency range of

sympathetically modulated oscillations is not clear (whether at _ 0.1 I/z or at frequencies

below 0.1 Hz, i.e., at _ 0.03 to 0.05 Hz). The differences in the frequency ranges could be

methodological., i.e., depending on the technique by which spectral powers are quantified,

e.g., using either two or three frequency bins. When HR data from the present study were

processed using the technique described by Pagani et al. (1986), the resulting spectral

power was concentrated in two regions, _ 0.1 and - 0.3 Hz (data not shown). Because the

spectral components with frequencies below 0.03 Hz were lumped with the DC component

and not used in subsequent analysis as suggested by Pagani et al. (1986), the presence of

low-frequency power at - 0.1 Hz (rather than at - 0.03 I/z) was not surprising. However, it

is also possible, as suggested by Madwed et al. (1991), that the differences in the fre-

quency ranges could be due to different delay times in peripheral and cardiac sympathetic

nerves as well as the relative gains of peripheral and cardiac sympathetics.

Limitations

One limitation of the present study was the inability to differentiate any direct effects of

furosemide on autonomic function from those effects that were subsequent to the volume

reduction due to furosemide. However, because half life of furosemide is relatively short

(92-,-7 minutes) (Goodman and Gilman, 1985), the direct effects were unlikely to influence

the data that were collected 18 hours after administration of furosemide. We did not

measure plasma volume to determine blood volume reduction. However, the reduction in

blood volume reported by other investigators after bedrest (Blomqvist et al., 1983;

Convertino et al., 1990), and the similarity of fluid balance and heart rate changes in the

present study to that after 3 days of bedrest (Convertino et al., 1990), leads us to speculate

that the change in autonomic balance that we observed was probably a consequence of
blood Volume reduction.

In conclusion, we analyzed the spectral content of cardiovascular variables measured

during supine rest before and after 20 hours of simulated microgravity. Our results indicate

that there is a shift in the baseline autonomic balance in cardiovascular regulation in favor

of the sympathetic branch as a consequence of exposure to simulated microgravity.

Notes

This research was supported by National Aeronautics and Space Administration grant NAG 9-298, and by
the Clinical Research Center (NIH M01-2602), University of Kentucky.
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An Optimized Index of Human Cardiovascular

Adaptation to Simulated Weightlessness
Mao Wang, Larry Hassebrook, Member, IEEE, Joyce Evans, Tomy Varghese, Member, IEEE,

and Charles Knapp

Abstract--Prolonged exposure to weightlessness is known to
produce a variety of cardiovascular changes, some of which
may influence the astronaut's performance during a mission. In
order to find a reliable indicator of cardiovascular adaptation
to weightlessness, we analyzed data from nine male subjects
after a 24-hour period of normal activity and after a period
of simulated weightlessness produced by two hours in a launch
position followed by 20 hours of 6° head-down tilt plus phar-
macologically induced diuresis (furosemide). Heart rate, arterial
pressure, thoracic fluid index, and radial flow were analyzed.
Autoregressive spectral estimation and decomposition were used
to obtain the spectral components of each variable from the
subjects in the supine position during pre- and post-simulated
weightlessness. We found a significant decrease in heart rate
power and an increase in thoracic fluid index power in the high
frequency region (0.2-0.45 Hz) and significant increases in radial
flow and arterial pressure powers in the low frequency region
(<0.2 Hz) in response to simulated weightlessness. However, due
to the variability among subjects, any single variable appeared
limited as a dependable index of cardiovascular adaptation to
weightressness. The backward elimination algorithm was then
used to select the best discriminatory features from these spec-
tral components and Fisher's linear discriminant and Bayes'
quadratic discriminant were used to combine the selected features
to obtain an optimal index of adaptation to simulated weight-
lessness. Results showed that both techniques provided improved
discriminant performance over any single variable and thus have
the potential for use as an index to track adaptation and prescribe
countermeasures to the effects of weightlessness.

I. INTRODUCTION

XPOSURE to microgravity or weightlessness is known
to produce a variety of cardiovascular (CV) changes or

adaptations [1]-[13]. Depending on the length of the exposure,

these changes may be relatively subtle or may result in

orthostatic hypotension which could influence or significantly

compromise the astronaut's performance during a mission.

The majority of studies that examined CV changes in

response to actual or simulated weigJatlesaness concentrated
on the static levels of cardiovascular variables, such as mean

heart rate and blood pressure. The monitoring of mean values

alone is not the only way of assessing weighdessness-induced
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adaptation in cardiovascular regulation. Quantification of the

dynamic properties of CV variables through spectral anal-

ysis has also been shown to provide an analytical tool to
assess relative contributions from neural pathways involved

in cardiovascular regulation [14]-[19].

To assess the potential of using the dynamic properties
of CV variables as an index to track weightlessness-induced

changes in CV regulation, we employed spectral analysis

and discrimination techniques to data acquired noninvasively

and continuously from human subjects after 24 hours of
normal activities and after 22 hours of simulated weightless-

ness (SW). A schematic diagram for obtaining this index is

depicted in Fig. 1. After acquiring data from subjects after
24 hours of normal activity, we exposed these subjects to

a simulated weightlessness protocol consisting of two hours
in the launch position followed by 20 hours of 60 head-

down tilt (ItDT) [4], [5], [8]-[12] plus pharmacologically
induced diuresis (furosemide) to accelerate volume depletion.

Applying discrimination techniques to spectral contents of
CV variables in this study allowed us to detect consistent

changes in cardiovascular parameters which appear to indicate

adaptation to simulated weightlessness.
Our objective is to assess the ability of spectral features,

acquired from noninvasively and continuously monitored CV

variables, to reliably predict cardiovascular adaptation in CV

regulation induced by simulated weightlessness. In the present

study, we demonstrated that individtud CV variables varied
considerably across subjects. However, when combined in the
form of a Fisher's linear discriminant or Bayes' quadratic

discriminant, the variance was considerably decreased and

the discrimination performance was improved. In future re-
search, these measures can be tested as reliable indexes of an

astronaut's adaptation to spacefli_jat in microgravity.

I[. SIMULATED WEIGHTLESSNESS

Tea healthy male volunteers [25.8 4- 1.4 yrs, 179.6 4- 1.4
cm, 76.5 4- 2 kg (data are represented as mean _+SEM)]

participated in the experiment (a similar study in female

subjects in pre SW state is currently being conducted). All but

two of the subjects in this study regularly engaged in some
form of aerobic exercise ranging from 3-20 miles/week of

running, jog,ging or walking (average 8.1 4- 2.6 miles/week).
The volunteers were screened prior to the experiment to

verify that no previous medical problem existed. On the

day of the experiment, impedance leads were attached for
measurement of the electrocardiogram, thoracic fluid index

0018-9294/96505.00 © 1996 IEEE
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(TFI), rate of change of thoracic impedance and beat-by-

beat estimates of left ventricular end-diastolic volume (EDV),

stroke volume (SVO, and cardiac output (CO) (Bomed, Car-

diodynamic Monitor, BoMed Inc., Irvine, CA). Continuous

measurements of peripheral arterial pressure (A.P) [(Finapres,

Ohmeda, Englewood, CO), calibrated with an upper arm cuff

(Sentry, NBS Medical, Cosa Mesta, CA)], and ascending aortic

blood flow velocity using continuous wave doppler (E,xerdop,

Quinton Instruments, Seattle, WA) and radial flow (RF) (Parks,

Model 909 Directional Doppler, Parks Medical, Beaverton,

OR) were also made. Heart rate (HR) was calculated from R-R

intervals in the ECG. After a 30 rain supine control period, the

subjects underwent a series of step and sinusoidal lower body

negative pressure (LBNP) tests to assess frequency response

characteristics of these subjects [20], [21]. After an ambulatory

period, the subject was reinstrumented and placed in the launch

position for two hours followed by 20 hours of 6 ° HDT. In

order to simulate the fluid loss of space flight, 40 mg of the
diuretic furosemide was administered by mouth after two hours

of 6 ° HDT. (Because the half life of furosemide is relatively

short, 92 4- 7 minutes [23], the direct effects were unlikely to

influence hemodynamic data 18 hours after administration of
furosemide.) At the end of the 20 hours of HDT, the subjects

were returned to supine for 30 rain. Pre- and post-SW data

from nine subjects during the 30 rain supine rest periods were

used to develop the adaptation index; the other subject was
used to test the index.

Table I lists mean values of major hemodynamic parameters

in these 10 subjects before and after SW. There was a negative

fluid balance (fluid in-flnid ou0 of 497 4- 167 ml (p <

0.01) which was reflected in significantly decreased stroke

volume and central venous pressure. The regxllatory response

to the change in fluid balance included an increase in vascular
resistance mediated by increases in the vasoactive hormones

renin and norepinephrine. The net result, with respect to mean

values, was that blood pressure did not reflect the decrease in

stroke volume but was actually slightly increased. The blood

pressure regulatory capability of these subjects in response to

blood pooling induced by graded leveis of LBNP was tested
before and after SW [20]. We determined that, after SW, the

maintenance of blood pressure during I_J3NP stress required

significantly higher levels of mean 1-12Zand TPR. This loss of

orthostatic reserve is one symptom of the phenomenon labeled
orthostatic intolerance or Cardiovascular deconditlouing which

develops with exposure to real or simulated weightlessness

[1]-[6]. In the following sections the neural components of

the regulatory response to SW will be explored using spectral

TABLE I

MEAN VALUES OF HEMODYNAMIC PARAMETERS

B_OP.E Ar,rD AFTER SW TAKEN FROM 10 SUBJECTS

Variable Pre SW Post SW

HR (bpm) 67.1+4.0 68.5+4.6

AP (mmHg) 89.0+9.2 90.6+9.1

CVP (mmHg) 3.38_+0.58 1.55_+0.76"

SV (ml) 86.0-2:12.3 74.8+15,3"

TPR (mmHg/(L/min)) 15,4.I:3.3 18.7-t-3.3

Plasma renin (ng/mlfar) 1.8 li-0.22 3.6-20.58"

Epinephrine (pg/ml) 25.8+4.2 29.7.+.5.1

Norepinephrine (pg/ml) 79.9-2_12.3 100.4+13.5"

* Significantly (p < 0.05) different from pre SW.

TPR = Total peripheral resistance.

analysis and discrimination techniques to obtain an opfimiTed

index of sympathetic and parasympathetic autonomic balance.

YI'[. SPECTRAL ANALYSIS

The choice of CV variables to include in this index was

based on both standard spectral measurements and measure-
ments from variables that could provide insight into the fluid

volume shifts associated with SW. The standard spectral

indices, HR and AP, have been explored extensively for their

ability to provide quantitative information about changes in

the balance between sympathetic and parasympathetic compo-
nents. Previous studies in our laboratory [20], [22] have shown

that SW evoked changes in HR and AP spectral power that

were statistically significant. The decision to include variables
that reflected the fluid volume shifts associated with SW was

based on the consistent findings that both true and simulated

weightlessness have been shown to translocate vascular vol-

ume from peripheral to thoracic regions [1], [2], [4], [11], [13].
Our indices of thoracic fluid index and peripheral flow were

therefore used as indicators of the neurally mediated responses

to this translocation of fluid.

HR, AP, TFI, and RF were digitized at 500 Hz using

DATAQ and analyzed on an IBM RISC/6000. The data for
each variable consisted of --,30 rain during supine control

before and after SW.

Data were low-pass filtered at 0:7 Hz and divided into 2.5-

rain-long segments that partially overlapped. Autoregressive

(AR) spectral estimation techniques (Burg's algorithm [24])
were used to estimate the spectrum (0.003-0.5 Hz) of each
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TABLE II 0.04

Bn,rNlrqG FREQUENCmS

Frequency Range (Hz)
Variable

LF HF

HR 0.003-0.10 0.20-0.45

TFI 0.003-0.10 0.10-0.45

RF 0.003-0.20 0.20-0.45

AP 0.003-0.05 0.20-0.45

2.5-rain data segment. The order of the AR spectrum was

determined according to Akaike's final prediction error (FPE)
criterion [25] and tests for whiteness [26] of the prediction

error. The order ranged from 30--40. To reduce the effect of

very low frequency trends on spectral estimation, each data

segment was detrended using quadratic polynomial fitting prior

to spectral estimation. The spectrum was then decomposed into

low-frequency (Lb-) and high-frequency (I-IF) bins. I-IF spectral

power has been reported to be indicative of parasympathetic
influence on the cardiovascular regulatory system and LF

power has been shown to be influenced by both parasym-

pathetic and sympathetic branches of the autonomic nervous

system [14]-[19]. The LF and I-IF bin widths for each variable
were chosen to maximize the difference in spectral power

in the bin between pre SW (G1) and post SW (Go). More

specifically, for each variable, the highest frequency contained
in the LF bin and the lowest frequency contained in the I-IF
bin were determined so that the difference between the means

of stxmtral power in that bin for Go and G1 was maximum
and the variance minimum while the lowest frequency of LF

and highest frequency of I-IF were fixed at 0.003 and 0.4 IIz,

respectively. That is, we defined the frequency range of LF
and I-IF such that the distance between two sample class means

relative to the dispersion within the classes, or the Mahalanobis
distance

d2(f) = Irnl(f) - m0(f)l "_
s_(f) + s_(f) (1)

was maximum, where f is the width of LF or I-IF in Hz, m{

and s_ are the mean and variance of spectral power in LF or
I-_ for Gi (i = 0, 1). The resultant binning frequencies for the

variables are listed in Table II.

The power in LF and I-IF was computed by spectral decom-

position. It can be shown that an AR specmam

PM
S(z) : M 2 (2)

i=l

can be decomposed into

= + 1
j=l Z- Z7

-- Decomposed (LF)

Decomposed (HF)
0.03 .... Original

0.02

0.01 __

0.00 -- _
0.0 0.1 0.2 0.3 0.4

Frequency (Hz)

Fig. 2. A _ spectrum decomposed into LF and I-IF bins using All spectral

decomposition.

Fig. 3. TFI spectra across time before SW (15 min) and after SW (15 rain)

in one subject.

a i

z-zj + 1
Z -- --

zj

(3)

where M (assume even) is the order of the AR model, zj is

tile jth pole of S(z), and o_j is the residual of S(z) at zi . The
term in the bracket can be considered as the power attributable

to pole zj and its conjugate. The power in LF or I-IF can be

computed by summation of the power related to the poles in

LF or HF. An exampte of decomposed spectra is depicted in

Fig. 2.

Fig. 3 presents TFI spectra across time for the second 15
rain of the 30-rain supine rest periods before and after SW in

one subject, which shows changes in spectra between states as

well as stability of spectra across time for each state. Single

spectra taken near the end of 30-rain supine rest, both before
and after SW for each variable in one subject, are shown in

Fig. 4. For the group of nine subjects, spectral differences in
HR, TFI, RF, and AP were statistically significant after SW
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Fig. 4. Single spectra of HR, TFI, RF, and AP for one subject before and after SW.

(Fig. 5). The HF power of HR was significandy reduced after

SW, while the t-IF power of TFI and LF power of RF and AP

were significantly increased (Wilcoxon matched-pair signed-
rank test [27], p < 0.05). The increase in overall total power
of TFI in combination with the broadening of TFI spectra

indicated that, after SW, breathing frequency was more varied

and the depth of breathing was increased. The HR, AP, and RF
results indicated a shift in autonomic balance toward reduced

parasympathetic (decreased I-IF, HR power) and increased
sympathetic (increased LF, AP, and RF powers) components

of CV regulation after SW.

IV. DISCRLME'qANT ANALYSIS

The spectral components of the CV variables described in

Section III were explored in order to obtain a reliable index

of adaptation in CV re=malation produced by our model of

simulated weightlessness. As shown, some spectral compo-

nents of some CV variables appear promising as features for
discrimination of cardiovascular adaptation. However, these

individual features exhibited considerable variability across

subjects. To obtain an index with improved discriminatory

performance, Fisher's linear discriminant function [28] was
used to combine the features into an optimal feature, an index

of adaptation to weighflesaness, defined as a linear function
of the feature vector z

l(z_) = totz (4)

where w, a feature weighting vector, maximizes the Rayleigh

quotient

_(__)_ __Ss__
wtSww_ (5)

Sw is the within-class scatter matrix which is a pooled

covariance matrix of the sample covariance matrices of the
two classes Go and G1

Sw = So + $1 (6)

and SB is the between-class scatter matrix

SB = (_1 - m__o)(m_- ,'no)_ (7)
where

--m ts,= _ (m-m,)(_=, _D, i=o, 1 (8)
2EGi

and m._.i is the sample mean of Gi. It is easy to show [28] that
a vector w that maximizes N(w) is

s_' (._1- "no)w = -- (9)
- IlS#(_x-m0)lt

To examine the discriminatory properties of individual CV

variables, the discriminant function was first applied to each

variable. The feature vector was composed of the LF and I-IF

power of that variable, such that

X___= [2LF 2HF] t. (I0)
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Fig. 5.
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LF and HF spectral powers of HR, TFI, RF, and AP averaged for nine subjectS pre- and post-SW.

Different subjects have large differences in the spectral power
of each variable which will introduce large variances. To

reduce the variance introduced by each subject, the LF and

I-IF power was normalized to each subjects's baseline (pre

SW) spectral power

_V= A-lz- (11)

where A is the normalization matrix

A = diag[z_z z_r]. (12)

The elements Z_F and Z_F are the baseline LF and HF power,

respectively, which are obtained from each subject prior to
simulated weightlessness. In addition, when several CV vari-
ables are combined into a pattern vector, the original variables

have physical units which are completely unconnected and

may differ considerably in magnitude. Therefore, the round-
off errors in the covariance matrices may be serious. This

problem was reduced after normalization. Normalization also
allows us to eliminate the absolute value from variables so

that the weighting coefficient of a variable in w indicates

the relative importance of discriminant information that the

variable contains.

Fig. 6 shows the Fisher's discriminant applied separately to
the HR, TFI, RF, and AP spectra (Fig. 4) for each of the nine

subjects. If we treat these discriminant values as adaptation
measures, we see that for each variable the discriminant of

most subjects decreased after SW. However, there was a

large deviation across subjects. Some subjects showed large

adaptation in some variables and small or even opposite

adaptation in the others.
To obtain a better index, we combined the best features from

all possible CV variables into one feature vector. Inclusion

of all spectral features may lead to unstable estimates of

HF

the feature weighting vector (or the discriminant function

coefficients) ff these features contain redundant information.

Also, any feature which does not contribute to the index's

predictive ability should be excluded since the more features
included, the greater the costs of data collection and com-

putation. The best features to include therefore, had to be
determined. A backward elimination algorithm [29] was used

to select a subset of important features from the complete set.

The procedure starts with the complete set and then deletes
one feature variable at a time until some stopping criterion is

satisfied. The feature to be deleted is the one that decreases

D 2 the least, where D 2 is the Mahalanobis distance

D 2 = (---_I- m---2)tSwI(-ml - __mJ. (13)

The Rao F statistic [30] was used as the stopping criterion to

test the significance of a variable's contribution to the discrim-
ination. The elimination procedure is shown in Table Ill. At

stage 1, the LF component of TEl was selected for removal.

At stage 2, the HF component of AP was removed. At stage

3, the LF component of HR was removed. At stage 4, the

LF component of AP was removed, and at stage 5, the HF

component of RF was removed. Elimination was then stopped
since all the remaining features were significant at the 0.1 level

(F > 3.39). The selected feature vector is, thereby

y --_ [YHI:t,HF YTFI,HF YRF,LF] t" (14)

A sample space spanned by HR (I-IF), TFI (I-IF), and RF (LF)
is shown in Fig. 7, from which we can see that these two

classes are separable. The feature weighting vector estimated

from the training data set (taken from nine subjects near the

beginning of the both pre- and post-SW supine rest periods) is

w = [0.58 -0.78 -0.24] t. The corresponding Fisher's linear
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Fisher's linear discriminants of HR, TFI, RF, and AP for nine subjects before and after SW.

discriminant function is

l(_y)=__'y

= 0.58YHR,HF -- 0.78YTFI,HF -- 0.24yRF,LF. (15)

If normal distributions are assumed, the minimum error prob-
ability decision boundary is -0.77. The adaptation index is
then

l(y) : 0.58yHR,HF -- 0.78yTFI,HF -- 0.24yRF,LF q- 0.77. (16)

In Fig. 8 (a) we show the result of applying the above index to
the same data as in Fig. 6 (taken near the end of pre- and post-
SW supine rest periods). Here we see that Fisher's discriminant
for the combined feature vector demonstrates increased separa-
tion and reduced deviation over any single variable. Therefore,
if we treat the discriminant for the combined feature vector

as an index of adaptation to weightlessness, a consistent
adaptation across all subjects is observed.

It is worth noting that if the two classes, Go and G1, have
unequal variance, Fisher's linear discrimination function may
not be optimal. Bayes' quadratic discriminant traction [31]
may be used (if normal distributions are assumed) such that

Isll
q(_)= in T-_ + (-y- ml)*s?_(Y- m_)

- (_- mo)_S_-l(u - -,o)- (17)

i,
4

La-

Fig. 7.

o Pre SW
• Post SW

i ......4....

...1"_ .... ......._......

g • '._ """........

A sample space spanned by HR (HF), TFI (HF), and RF (LF).

It is evident that if Go and Gz have identical variance, the

quadratic discriminant function is reduced to the linear dis-

criminant function. Therefore, the linear discriminant function

performs as well as the quadratic function unless there is a
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(a) Fisher's linear diseriminant and (b) Bayes' quadratic diseriminant for combined features of FIR (HF), TFI (HF), and RF (LF) for nine subjects.

TABLE liI

FEATtrRE SELECrlON USING BACKWARD ELIMI_/ATION

Stage 1 2

Variable HR HR TH TFI RF RE AP AP HR HR TFI RF RE AP AP

Deleted(LF) (HF) (L_ (HiD (LF) (HF) (LF) _ (12--)(HID (HID (LF) (H_ (LF) 0aF)
D 2 11.3 7.2 12.6 4.6 6.2 8.9 11.6 12.2 tl.2 7.1 4.6 5.6 8.9 11.6 12.2

F 0.8 4.5 0.1 8.6 5.8 2.6 0.6 0.2 0.9 5. i 9.5 7.4 2.9 0.6 0.2

Stage 3 4 5 6

Variable Bill HR TFI RF RF AP HR TFI RE RE AP HI: TFI RE _ _ TFI RE

Deleted (LIP) (HF) (LF) (LF) _ (LF) _ (HI=) (LF) (HI 7) (LF) (I-IF) (HI =) (LF) (HF) (I-IF) _ (LF)

D 2 11.2 7.0 4.0 5.6 8.5 10.9 5.7 4.3 4.2 7.4 10.0 5.6 3.8 3.2 7.4 4.5 1.2 2.6

F 0.7 5.3 I0.0 7.7 3.4 1.0 6.6 10.2 10.6 3.6 1.0 6.1 i0.7 12.6 3.1 4.8 17.5 10.7

large difference in the covariance matrix. Bayes' quadratic
discriminant for the same data set is shown in Fig. 8(b).

Lilliefors' procedure [27] was used to test the validity of

the normality assumption. The hypothesis that the two classes

are normally distributed could not be rejected at the 0.05 level
and therefore a normal distribution of data in these classes

may be assumed.

As seen in Fig. 3, CV variable spectra demonstrate large
variance across time due to the "noisy" nature of the car-

diovascular system. When the index is used to continuonsly

monitor the adaptation, presmoothing is necessary to elimi-
nate occasional, noise-like transient components and thereby

increase the immunity to noise and reduce the risk of making

a wrong decision based on transient outlier data. Many data

smoothing schemes are available. The simplest one is linear

smoothing such as Harming low-pass filtering. The drawback is

that linear filtering is sensitive to outlier data, while some types

of nonlinear smoothing, such as median filtering, have the

advantage of being less sensitive to onflier data. In the present

study, a median filter, used to eliminate oufliers, followed by

a Harming filter, demonstrated reasonable performance.

Fig. 9 shows the index (and its spectral components) applied

to the test subject pre- and post-SW and at intermediate stages
of the SW protocol. Adaptation similar to the set of nine

subjects (Fig. 8) was observed in this test subject.

V. DISCUSSION

The weiojatlessuess simulation protocol resulted in a neg-

ative fluid balance which resulted in significant decreases in

stroke volume and central venous pressure. The AP regulatory

response of the system, however, compensated for the decrease

in fluid volume by increasing resistance mediated by increas-

ing plasma levels of renin and norepinephrine (an independent
marker of increased sympathetic activity). The lack of change

in the resting HR, in spite of increased sympathetic activity,

is not surprising since peripheral vascular resistance increased,

thereby compensating for the SV decrease. The combination of

negative fluid balance with decreases in mean CVP and SV and
increases in plasma renin and norepinephrine are in general

agreement with those from other studies of simulated weight-
lesaness [1], [2], [4], [5], indicating increased sympathetic

activity in response to decreased plasma volume. Inflight CV
data are rare, but at least one study reported that sympathetic
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1

0

Fig: 9. Adaptation index (Fisher) applied to the test subject pre- and post-SW and all intermediate stages of the SW protocol The spectral compo-

nents are also shown,

indices (norepinephrine, I-IR) were decreased during ttight

while the post flight response to standing was characterized

by reduced parasympathetic and increased sympathetic activity
[32].

With respect to the physiological interpretation of the spec-

tral contents of CV variables, studies in dogs and humans
indicate that t-IF osciUations in HR are mediated by the

parasympathetic branch of the autonomic nervous system. It
has been shown, in dogs, that LF oscillations in HR are

mediated by the sympathetic nervous system [14]. In hu-
mans, some investigators [17] have found that LF oscillations

were influenced by both the parasympathetic and sympathetic
branches of the autonomic nervous system, while others [18],

[19] concluded that an increase in the LF power was indicative

of increased sympathetic influence on the CV regulatory

system. With respect to our model of simulated weightlessness,

we previously determined that the spectral contents of CV

variables indicated a shift in sympathovagal balance toward

enhanced sympathetic influence [22].

In the present study, we interpret our spectral results to

indicate a similar shift toward enhanced sympathetic control:

1) the significant decrease in the HF component of HR

power after simulated weightlessness indicated a shift toward

decreased parasympathetic control of HR [Fig. 5(a)] and 2) the

increased LF power in RF [Fig. 5(b)], implicated an increase in

sympathetic control of vasomotion. The significant increase in

I-IF power of TFI [Fig. 5(c)] could be due either to an increase
in tidal volume or to a change in neural control of respiratory

parameters, but the present results offer no evidence to relate

this parameter to sympathetic/parasympathetic balance.

Our data also indicated that the level of change due to

simulated weightlessness varied from variable to variable

and subject to subject. That is, some subjects showed larger

changes in some CV variables but less change in other
variables (Fig. 6), indicating that the spectral components of

a single variable may be limited as a dependable index of
cardiovascular adaptation to weightlessness.

To build a robust adaptation index, we formed a feature

space spanned by the most important features, I-IR (I-t1=), TFI
(I-IF), and RF (LF), as determined by the backward elimination

algorithm. These features were further linearly combined to

form an optimal index using Fisher's linear discriminant
function which combines features according to the relative

importance of discriminant information contained in each fea-
ture. Results showed that this integrated and optimixed index

demonstrated improved discriminatory performance over any

single variable. It is worth noting that a multi.feature index is

not necessarily always better than a single-feature index unless

they are appropriately screened and combined in an optimal

way.
In conclusion, we verified that the spectral powers in LF

and/or I-IF of some CV variables are promising as a feature

space for discrimination of human cardiovascular decondi-

tioning produced by simulated weightlessness. We found that

cardiovascular adaptation to simulated weightlessness could

be characterized by changes in LF and/or ItF spectral power

of t-IN, TFI, and RF. However, due to the large variance

across subjects, the reliability of any singte variable as an

index of cardiovascular adaptation to simulated weightlessness

was limited. Discriminatory performance was improved by

using multiple CV variables with Fisher's linear discrimi-

nant or Bayes' quadratic discriminant function The ability
to discriminate between subjects before and after simulated

weightlessness has the potential for use as an index to track
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adaptation and prescribe countermeasures to the effects of
weightlessness.
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HEART F:iATETIME-FREQUENCY REPRESENTATION
SubJ: Q12. Muscarlnlc administration

0.005 mg/kg atropine injections

Figure 6a: Heart rate spectral power in one subject during

increasing dosage of intravenous atropine.



HEART RATE TIME-FREQUENCY REPRESENTATION
SubJ: Q12. Beta blockade

0.05 mg/kg propranolol injections

Figure 6b: Heart rate spectral power in one subject during

increasing dosage of intravenous propranolol.
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